Comparison of Direct and Indirect Immunofluorescence Staining of Clinical Specimens for Detection of Respiratory Syncytial Virus Antigen

LINDA L. MINNICH1 AND C. GEORGE RAY1,2*

Departments of Pathology1 and Pediatrics,2 University of Arizona College of Medicine, Tucson, Arizona 85724

Received 23 November 1981/Accepted 11 January 1982

Immunofluorescence staining methods for respiratory syncytial virus antigen detection were compared. Of 50 specimens originally positive for respiratory syncytial virus by direct immunofluorescence and culture, 49 were positive by repeat direct immunofluorescence and 32 were positive by indirect immunofluorescence. Additional results obtained on specimens originally negative for respiratory syncytial virus by direct immunofluorescence, culture, or both indicate that direct immunofluorescence staining for respiratory syncytial virus antigen was more sensitive than was indirect immunofluorescence.

Detection of respiratory syncytial virus (RSV) antigen in clinical samples has been described for the direct (DFA) and indirect (IFA) immunofluorescence staining methods (1, 2, 4–6). The purpose of this study was to evaluate the sensitivity and specificity of DFA and IFA procedures for RSV antigen detection in epithelial cells obtained from nasopharyngeal-throat swabs. The results were compared with those previously obtained by DFA and culture at the time specimens were originally submitted to our laboratory.

Fluorescein isothiocyanate-conjugated rabbit antisera to RSV (Flow Laboratories Inc.) were diluted 1:10 in phosphate-buffered saline (6). The lot in the original study was R830002F, and lot 45637005 was used in the repeat study. Bovine anti-RSV serum lot K5730 (Burroughs Wellcome Co.) was used at the dilution received, and fluorescein isothiocyanate-conjugated rabbit anti-bovine serum lot K6649 was diluted 1:10 in phosphate-buffered saline as recommended by the supplier (Burroughs Wellcome Co.). The optimal dilutions were determined as previously described on RSV-infected cell cultures and uninfected control cells (6). The antisera were also evaluated for cross-reactivity to parainfluenza virus types 1, 2, and 3, influenza A and B viruses, adenovirus, and mumps virus in infected cell cultures. No cross-reactions were detected. Antisera were dispensed in working volumes and stored at −70°C until used.

A bank of slides containing nasopharyngeal-throat epithelial cells from 80 patients with syndromes clinically compatible with RSV infections was selected. These represented a portion of a larger group which was previously reported in a comparative study of DFA versus diagnosis by virus isolation (6). A total of 50 patients were originally culture- and DFA-positive for RSV, 10 were DFA-positive and culture-negative, and 20 were DFA-negative and culture-negative.

Specimens were collected and processed as previously described (6). Briefly, nasopharyngeal-throat swabs were obtained and placed in viral transport media. Upon receipt by the laboratory, specimens were vigorously blended in a Vortex mixer, and the swabs were removed. We then added 1 ml of additional antibiotics in Hanks balanced salt solution to the specimens, which were then centrifuged at 3,500 rpm for 20 to 30 min. A 0.2-ml sample of supernatant was inoculated onto duplicate tube cultures of primary cynomolgus monkey kidney, HL (a heteroploid cell line), and human embryonic tonsil diploid fibroblasts. Cultures were observed daily for cytopathic effects.

Sediment from centrifuged clinical specimens was suspended in just enough phosphate-buffered saline to yield a slightly turbid suspension and spotted onto slides as previously described (2, 3, 6), allowed to air dry, and fixed in cold acetone (−20°C) for 10 min. Slides were stored at −20°C until the time of study.

Slides were removed from the freezer and warmed to ambient temperature. These were labeled with patient numbers only, and no indication was made as to previous results. Each slide was divided, and one-half of each was overlaid with bovine anti-RSV serum. Slides were incubated for 30 to 60 min at 35°C in humidified chambers and then washed twice for 5 min in phosphate-buffered saline. The side of
the slide to which bovine anti-RSV had been
applied was then overlaid with fluorescein iso-
thiocyanate-conjugated goat anti-bovine serum.
The other half of each slide was overlaid with
fluorescein isothiocyanate-conjugated rabbit
anti-RSV serum (6), incubated and washed as
above, counterstained with 1% Evans blue in
saline, and mounted with buffered glycerol (pH
8.0) and a cover slip. Slides were read by one
observer who had no knowledge of either the
randomized assignment of slides for DFA or
IFA methods or of previous results of fluores-
cence staining or culture methods. Observation
of stained slides was done on a Zeiss halogen-
source fluorescence microscope.

The results are summarized in Table 1. Of the
50 specimens originally culture- and DFA-posi-
tive for RSV antigen, 49 were positive by the
DFA method and 32 were positive by the IFA
method. All 10 of the originally DFA-positive,
culture-negative specimens were positive by
DFA on repeat testing, but only 6 were positive
by IFA. Of the 20 specimens originally reported
as negative by both DFA and culture, 1 was
positive by DFA on repeat study, whereas none
were positive by IFA.

Granular fluorescence within the cytoplasm
was required before a specimen was determined
to be positive for RSV antigen. Cellular mor-
phology was more easily seen in the wells
stained with the direct conjugate. The direct
conjugate also showed fluorescence with yeast
cells in clinical specimens, but this did not create
a problem because of the criteria established.
This did not occur with the IFA system, but
more low-level homogeneous, nonspecific stain-
ing of epithelial cells was observed. The data
presented here suggest that direct immunoflu-
orescence staining of clinical samples for RSV
antigen may be considerably more sensitive than
IFA.

LITERATURE CITED

detection and identification of respiratory viruses by
immunofluorescence and isolation techniques in the diag-
oses of respiratory viral infections of children. Infect.
Immunofluorescence diagnosis of acute viral infections.
respiratory syncytial virus infection by immunofluores-
immunofluorescent staining of clinical specimens for re-
spiratory virus antigens with conventional isolation tech-