Rapid Identification of Pregnant Women Heavily Colonized with Group B Streptococci

DOUGLAS E. JONES, ELIZABETH M. FRIEDEL, KEITH S. KANAREK, J. K. WILLIAMS, AND DANIEL V. LIM

Department of Biology, University of South Florida, Tampa, Florida 33620, and Departments of Pediatrics and Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa, Florida 33612

Received 22 February 1983/Accepted 10 June 1983

Pregnant women admitted to Tampa General Hospital, Tampa, Fla., were cultured for group B streptococci (GBS). Culture swabs were placed into enriched, selective Todd-Hewitt medium and were quantitated for GBS. The broth cultures were tested by slide coagglutination before incubation and after 5 and 20 h of incubation. Fifty-four (27%) of the 201 maternity patients cultured were positive for GBS and were identified as such by slide coagglutination. A strong correlation was found between the magnitudes of colonization and the times required to identify the broth cultures as GBS positive. Cultures from mothers heavily colonized (mean concentrations of 3×10^4 GBS per culture swab or greater) were identified after 5 h or less of incubation. Mothers lightly colonized with GBS (mean concentrations of 2×10^2 GBS per culture swab) were identified only after their broth cultures had been incubated for 20 h.

Group B streptococci (GBS) are among the most frequent causes of neonatal sepsis, meningitis, and respiratory distress. Approximately 1% of the infants colonized with GBS at skin sites (umbilicus, rectum, and throat) develop early-onset sepsis during the first week of life. This disease has a 50% mortality rate, despite antimicrobial therapy (3).

GBS have been shown to colonize the vaginal tracts of 7 to 20% of all pregnant women (5, 9, 10). Infants usually become infected with GBS during birth. Data from our laboratory indicate that 70% of the neonates delivered by mothers colonized with GBS are colonized by the organism at external skin sites. Our data show further that heavily colonized infants ($\geq 10^4$ GBS per culture swab at two or more external skin sites) are symptomatic for early-onset sepsis (11). Ancona et al. (1) and Bobitt et al. (6) noted in independent studies that women heavily colonized with GBS delivered infants who were also heavily colonized with the bacteria. If these women at high risk of delivering symptomatic infants could be rapidly and accurately identified in routine prenatal screening, the morbidity and mortality rates of early-onset GBS sepsis would be significantly reduced. We describe in this paper the combined use of an enriched, selective broth medium and slide co-agglutination to screen such maternity patients.

MATERIALS AND METHODS

A total of 201 pregnant women admitted to Tampa General Hospital from September 1982 to January 1983 were cultured for GBS. Vaginal cultures were obtained while the women were prepared for delivery. Bacteriostatic jelly was not used before culturing. Cultures were taken with Culturette II dual swabs (Marion Scientific Corp., Kansas City, Mo.) and were refrigerated at 4°C until processed.

One swab from each dual-culture swab set was inoculated into enriched, selective Todd-Hewitt broth containing 1% yeast extract, 10 μg of colistin methane sulfonate per ml, and 15 μg of nalidixic acid per ml (GIBCO Diagnostics, Madison, Wis.). The broth cultures were tested for GBS by slide coagglutination (Phadebact Streptococcus Test, Pharmacia Diagnostics, Piscataway, N.J.) after 20 h of incubation at 36°C in 5% CO$_2$. All broth cultures were tested with groups A and B streptococcal antisera. Group A antiserum served as a negative control.

Those cultures positive for GBS were retested with the second swab from the dual-culture swab set. The second swab was inoculated into 2 ml of enriched, selective Todd-Hewitt broth. The broth culture was mixed vigorously with a Vortex-Genie mixer (Scientific Industries, Inc., Bohemia, N.Y.), serially diluted in 0.85% saline, and plated onto duplicate plates of Columbia colistin-nalidixic acid agar with 5% sheep blood (GIBCO). The number of CFU was determined by taking the average of duplicate plate counts after incubation of the plates for 24 h at 36°C in 5% CO$_2$. This second broth culture was retested for GBS by slide coagglutination immediately after inoculation.
(time zero) and after 5 and 20 h of incubation. Negative
cellular cultures (one for every two to three positive
cultured) were also retested by this pro-
during and served as negative control cultures for this
portion of the study.
Coagglutination test results were graded as negative
or 1 +, 2 +, 3 +, or 4 +. A 4 + reaction was one in which
large clumps appeared within 60 s. A 3 + reaction repre-
lected the formation of large clumps within 60 to 90 s. The appearance of medium clumps within 0 to 90
s was graded as 2 +, and the appearance of small
clumps within the same time period was graded as 1 +.

RESULTS
Fifty-four (27%) of the 201 pregnant women
cultured in this study were colonized with GBS
and were so identified by slide coagglutination.
Two (3.7%) of the 54 GBS-positive maternal
broth cultures were identified by slide coagglu-
tination before incubation (time zero) (Table 1).
Both of these broth cultures were inoculated
culture swabs having 10^7 GBS. Nineteen
(35%) of the positive maternal cultures were
identified after 5 h of incubation. These cultures
had mean concentrations of 3 \times 10^6 GBS per
swab. Thirty-three (61%) of the 54 maternity
patients were identified as GBS carriers only
after their broth cultures had been incubated for
20 h. These cultures contained mean concen-
trations of 2 \times 10^7 GBS per swab. The differences
in magnitudes of colonization among those
mothers identified at 5 h were not significant,
with the exception of the one patient colonized
at only 10^4 GBS per swab. There was no signifi-
cant difference among those mothers identified
at 20 h. Significance was determined by t test
analysis, using z scores (P < 0.01). Such analy-
sis was performed on the means of the log_{10} of
CFU from the culture swabs.

DISCUSSION
Several investigators have proposed maternal
screening programs as a means of identifying
infants at high risk of developing symptomatic
GBS infections (2, 10, 13). Ryan and Barrett (14)
recently reported the use of immunofluores-
cence to screen mothers and infants for GBS.
Selective broth medium is the single most sensi-
tive method of detecting vaginal colonization of
GBS (4, 7). In the past, however, broth cultures
have been used to identify all colonized moth-

ers, not specifically those at high risk of deliver-
ing symptomatic infants.
We describe in this study a screening program
that utilizes an enriched, selective broth medium
and slide coagglutination to specifically identify
high-risk mothers. Coagglutination is a proven
technique, shown to be 98% accurate in identifying
streptococci (8, 12, 15). The results of this study
showed that coagglutination is sensitive in
detecting GBS in broth cultures at concentra-
tions of 10^7 GBS per ml or greater. Vaginal
cultures containing this concentration of bacte-
ria (10^7 GBS per culture swab or greater,
incubated into 2 ml of broth) could be identified by
slide coagglutination immediately upon inocula-
tion (time zero). Cultures containing mean concen-
trations of 3 \times 10^4 GBS per swab were
identified after 5 h of incubation, whereas those
with mean concentrations of 2 \times 10^6 GBS per
swab took 20 h of incubation for identification.
Overlaps in identification times for cultures con-
taining 10^6 to 10^7 GBS per swab were probably
due to differences in generation times among
strains of GBS.
These results indicate that mothers heavily
colonized with GBS can be rapidly (0 to 5 h)
identified by inoculating vaginal culture swabs
into enriched, selective Todd-Hewitt broth with
subsequent identification by slide coagglu-
tination. These data, in combination with those
from our previous report (11) that heavily colo-
nized infants develop group B sepsis and the
reports of others (1, 6) that heavily colonized
infants are delivered from heavily colonized
mothers, form the basis of a new screening
technique. This technique would allow clinicians
to rapidly detect those mothers at high risk of
delivering infants symptomatic for early onset
group B sepsis. Identification of the high-risk
infant before delivery would enable the clinician
to initiate chemotherapy immediately after del-
ivery, thereby significantly reducing the mor-
bidity and mortality rates of neonatal group B
sepsis.

ACKNOWLEDGMENTS
This investigation was supported in part by a Grant-in-Aid
of Research to D.E.J. from Sigma Xi, The Scientific Research
Society.
We appreciate the clinical assistance of residents and nurses

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>No. of GBS-positive women colonized with the following concn (GBS per swab):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><1 \times 10^1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>11</td>
</tr>
</tbody>
</table>

TABLE 1. Correlation of magnitude of colonization and identification at 0, 5, and 20 h
in the Departments of Pediatrics and Obstetrics and Gynecology at Tampa General Hospital.

LITERATURE CITED

