Six New Leptospiral Serovars Isolated from Wild Animals in Peru

JULIA LICERAS DE HIDALGO1 AND KATHERINE R. SULZER2*

Instituto de Salud Publica, Lima, Peru,1 and Division of Bacterial Diseases, Center for Infectious Diseases, Centers for Disease Control, Atlanta, Georgia 303332

Received 7 November 1983/Accepted 21 February 1984

Six new serovars of Leptospira interrogans were isolated from opossums (Didelphis marsupialis and Philander opossum) trapped in the Peruvian jungle. The proposed names, type strain designation, and serogroup of the serovars, respectively, were: huallaga, strain M-7, Djasiman serogroup; luis, strain M-6, Tarassovi serogroup; machiguenga, strain MMD-3, Icterohaemorrhagiae serogroup; rioja, strain MR-12, Bataviae serogroup; rupa rupa, strain M-3, Sejroe serogroup; and tingomaria, strain M-13, Cynopteri serogroup.

During the 1970s, studies were conducted on leptospirosis in wild animals in the Peruvian jungle (1-3; J. Licas de Hidalgo, Rev. Assoc. Microbiol., in press). Six strains of Leptospira interrogans isolated from the kidneys of opossums Didelphis marsupialis and Philander opossum eventually proved to be new serovars.

Primary isolation was made by inoculation of opossum kidney tissue into 7 to 10 tubes containing 1 ml of either Ellinghausen-McCullough-Johnson-Harris medium (Difco Laboratories), modified polysorbate 80 medium, or modified Vervoort medium (5). The isolates were classified into serogroups by the cross-agglutination pattern in microscopy-agglutination tests at the Instituto de Salud Publica, Lima, Peru (4). Serovar status of the isolates was determined by cross-agglutination and reciprocal agglutinin absorption tests by the microscopy-agglutination technique at the Centers for Disease Control, Atlanta, Ga. (4). Because the results indicated that the isolates were new serovars, subcultures of the type strains were sent for confirmatory tests to the Leptospirosis Reference Laboratory, Department of Health and Human Affairs, Brisbane, Australia, and the Institute of Epidemiology, Medical Faculty of Komensky University, Bratislava, Czechoslovakia.

To be considered a new serovar within an existing serogroup, an isolate must react to at least 6% of the homologous titer with antiserum to all members of the serogroup. Conversely, antiserum against the isolate must retain 10% or more of its homologous titer after cross-absorption with other members of the serogroup. Each of the isolates met these criteria.

Serovar huallaga was found to be a member of the Djasiman serogroup but was different from the other recognized members (djasiman, gurungi, and sentrot). Serovar luis was a member of the Tarassovi serogroup but was different from atchafalaya, atlantae, bakeri, bravo, chagres, darien, gatuni, guidae, kaup, kisuba, langati, navet, rama, tarassovi, and tuntas.

Serovar machiguenga was a member of the Icterohaemorrhagiae serogroup but was different from birkini, bog-vere, budapest, copenhageni, dakota, gem, mankanro, mwogolo, naam, ndahambukuje, ndambari, sarmini, smithi, tonkini, and weaveri. Serovar rioja was a member of the Bataviae serogroup but was different from argentinensis, balboa, bataviae, brasilensis, claytoni, djatzi, kobbe, and paidjan.

Serovar rupa rupa was a member of the Sejroe serogroup but was different from balcanica, caribe, gorgas, haemolytica, hardjo, medanensis, nyanza, polonica, recreo, ricardi, saxkoebing, sejroe, trinidad, and wolffi. Serovar tingomaria was a member of the Cynopteri serogroup but was different from cynopteri, the only other member of this serogroup.

Tests at the two reference laboratories confirmed our results on the new serovars. Identifying information for the six serovars, including source of the original isolate, is listed in Table 1. Cultures of these serovars are maintained in the permanent L. interrogans serovar collection at the Centers for Disease Control.

Each serovar was tested for virulence in guinea pigs weighing 150 to 200 g each. None of the guinea pigs gained weight in the 28-day period after inoculation. All guinea pigs developed antibody to their respective challenge strain, but only serovar machiguenga was recovered from kidney cultures at the end of the virulence study.

Three of the new serovars have been isolated from kidney cultures of additional wild opossums. Serovar luis was isolated from two P. opossum; serovar rupa rupa was isolated from one D. marsupialis and three P. opossum; and serovar tingomariensis was isolated from one D. marsupialis and one P. opossum.

The significance of these new serovars as health hazards for humans or domestic animals is unknown, but the abundant population of opossums near human habitation in the study areas indicates at least a potential for transmission.

In the course of the Peruvian field studies, 10 leptospiiral serovars, including the 6 new ones, were isolated. As investigations of leptospirosis continue to expand into new geographic areas, this study suggests that a rapid increase in the number of recognized serovars is to be expected. The limited availability of laboratories with the necessary serotyping capability and the amount of work required to establish the identity of new serovars points to the need for improved technology in the identification of leptospires.

* Corresponding author.
TABLE 1. New serovars of *L. interrogans* isolated from opossums in Peru

<table>
<thead>
<tr>
<th>Serogroup</th>
<th>Serovar</th>
<th>Type strain</th>
<th>Animal source</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diasiman</td>
<td>huallaga</td>
<td>M-7</td>
<td>D. marsupialis</td>
<td>Tingo Maria</td>
</tr>
<tr>
<td>Tarassovi</td>
<td>luis</td>
<td>M-6</td>
<td>P. opossum</td>
<td>Tingo Maria</td>
</tr>
<tr>
<td>Icterohaemorrhagiae</td>
<td>machiguenga</td>
<td>MMD-3</td>
<td>P. opossum</td>
<td>Puerto Maldonado</td>
</tr>
<tr>
<td>Bataviae</td>
<td>rioja</td>
<td>MR-12</td>
<td>P. opossum</td>
<td>Rioja</td>
</tr>
<tr>
<td>Sejroe</td>
<td>rupa rupa</td>
<td>M-3</td>
<td>D. marsupialis</td>
<td>Tingo Maria</td>
</tr>
<tr>
<td>Cynopteri</td>
<td>tingomaria</td>
<td>M-13</td>
<td>D. marsupialis</td>
<td>Tingo Maria</td>
</tr>
</tbody>
</table>

We thank Edi Higuchi, P. Cesar Quiroz, G. Manuel Flores, Z. Rigoberto Rojas, and Eleodoro Morales for their help and interest during the studies conducted in Peru.

LITERATURE CITED