Catheter Infection Caused by an Unusual Pathogen,
Agrobacterium radiobacter

C. POTVLIEGE,1* L. VANHUYLEGEM,2 AND W. HANSEN3
Departments of Microbiology1 and Anesthesiology,2 Centre Hospitalier Universitaire de Tivoli, La Louvière 7100, and
Microbiology Department, Brugmann University Hospital, Brussels,3 Belgium

Received 9 February 1989/Accepted 11 May 1989

The genus Agrobacterium is composed of several phytopathogenic species occurring worldwide in soils. One
nontumorigenic species, Agrobacterium radiobacter, has occasionally been isolated from clinical specimens, but
its pathogenic role in these cases has been difficult to ascertain since agrobacteria are usually isolated in
association with other bacteria. We report the case of a central venous catheter infection and present the
characteristics of A. radiobacter.

The genus Agrobacterium contains several plant pathogens, and species are assigned according to their phyto-
pathogenic effects (8, 11, 20). Three distinct species are recognized: A. tumefaciens (=pathovar of A. radiobacter), A. rhizogenes, and A. rubi; a fourth cluster of yellow-pigmented isolates has been tentatively designated the "Ag-
robacterium yellow group" (20). The strains that cause crown gall are associated with A. tumefaciens, and those
that cause hairy root disease are referred to as A. rhizogenes (8, 11). Strains that cause cane gall on Rubus spp. have been
designated A. rubi (8, 11); agrobacteria which are not phytopathogens have been referred to as A. radiobacter (8, 11),
although no morphological, physiological, or biochemical differences could be observed between strains of A. radi-
obacter and A. tumefaciens (4, 6, 8, 11, 15).

Agrobacteria have occasionally been isolated from clinical
specimens and classified as Vd-3 bacteria (18); nevertheless,
only a few human infections have been reported (2, 16, 20,
23).

We report here a further case of infection involving A.
radiobacter and present the characteristics of the organism.

A 14-month-old male hospitalized in our institution since
his birth was evaluated for fever. He had undergone several
intestinal resections for extensive Hirschprung’s disease.
Because of his short bowel syndrome, he was treated by
total parenteral nutrition through a central venous catheter
(CVC) placed 3 months earlier. Following a protocol used in
our hospital to evaluate these catheters in febrile patients
with CVCs (21, 22), the total parenteral nutrition team
collected blood from the CVC for semiquantitative culture
(SQCBC). For vascular reasons peripheral blood cultures
could not be obtained at that time.

After 48 h of incubation, the SQCBC showed confluent
growth of a gram-negative bacterium later identified as A.
radiobacter. Since the vascular accesses of the child were
quite scarce, it was decided to attempt antibiotic therapy
through the catheter (7). Different antibiotics (ceftriaxone
and amikacin, ticarcillin, and then imipenem plus cilastatin)
were tried in this attempt, each time with negative SQCBC
and improvement of the child. However, several days later,
the SQCBC once more became positive with the same
bacterium. At the last trial (with imipenem and cilastatin),
the child was febrile and clinically unwell at the time the
SQCBC showed a reappearance of A. radiobacter, so that
removal of the catheter was judged mandatory.

The CVC was finally removed when the child had received
a second course of imipenem plus cilastatin through it for 3
days; the culture of the CVC was negative, and the child
improved. The new CVC, which had to be placed for
vascular reasons close to the site of the previous one, was
bacteriologically monitored by frequent SQCBCs, which
remained sterile. All the control cultures performed at
the insertion site of the catheter were negative. All total par-
ental nutrition bags had been routinely cultured and were
always sterile. A. radiobacter was never isolated in our
institution from any other patients or sites. Its origin in this
case remains undetermined.

Biochemical tests were performed by the methods of
Gilardi (3), Hansen and Youssowsky (5), Hugh (9), and
Rubin et al. (19); the production of 3-ketolactose from
lactose was investigated by the method of Bernaerts and De
Ley (1).

All the strains isolated from our patient shared the same
features typical of the genus Agrobacterium (8, 11), as
presented in Table 1. Since the 3-ketolactose test was
positive, the strains may be considered to belong to biovar 1
according to Kersters and De Ley (11), which corresponds
to biotype 1 of Keane et al. (10).

The antibiotic susceptibility patterns of all isolates tested
by a conventional diffusion method on Mueller-Hinton agar
were identical. The strains demonstrated susceptibility to
ticarcillin, amoxicillin-clavulanic acid, tetracycline,
polyoxin B, cefuroxime, cefotaxime, ceftriaxone, trimetho-
prim-sulfamethoxazole, gentamicin, tobramycin, amikacin,
etnamicin, norfloxacin, and imipenem; resistance to penicil-
lin, ampicillin, pipercillin, and cefazolin was observed.

Agrobacteria are environmental bacteria occurring in
soils, particularly in the rhizospheres of plants. With the
exception of A. radiobacter, members of the genus Agro-
bacterium are plant pathogens, invading the crown, roots,
and stems of various dicotyledonous and some gymnosper-
mous plants via wounds, transforming the plant cells into
autonomously proliferating tumor cells (11). Tumor induc-
tion by Agrobacterium spp. is correlated with a tumor-
inducing Ti plasmid in the bacterial cell. Strains without Ti
plasmids are not phytopathogenic and should be named,
according to Kersters and De Ley, A. radiobacter (11).
Except for phytopathogenic effects and the presence of a Ti
plasmid, A. radiobacter is indistinguishable from A. tume-

* Corresponding author.
TABLE 1. Biochemical characteristics of strains isolated in the present case and comparison with results reported by Rubin et al. (19)

<table>
<thead>
<tr>
<th>Test or substrate</th>
<th>Reaction with field strains</th>
<th>% Positive predicted*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytochrome c oxidase</td>
<td>+</td>
<td>100</td>
</tr>
<tr>
<td>Motility</td>
<td>+</td>
<td>100</td>
</tr>
<tr>
<td>Acid from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>+</td>
<td>100</td>
</tr>
<tr>
<td>Fructose</td>
<td>+</td>
<td>100</td>
</tr>
<tr>
<td>Malate</td>
<td>+</td>
<td>100</td>
</tr>
<tr>
<td>Xylose</td>
<td>+</td>
<td>100</td>
</tr>
<tr>
<td>Mannitol</td>
<td>+</td>
<td>100</td>
</tr>
<tr>
<td>10% Lactose</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>3-Ketolactose production</td>
<td>+</td>
<td>100b</td>
</tr>
<tr>
<td>Growth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On MacConkey agar</td>
<td>+</td>
<td>100</td>
</tr>
<tr>
<td>On salmonella-shigella agar</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>In 6.5% NaCl broth</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td>+</td>
<td>100</td>
</tr>
<tr>
<td>Gas from nitrate</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Urease</td>
<td>+</td>
<td>100</td>
</tr>
<tr>
<td>Indole production</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Lysine decarboxylase</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Ornithine decarboxylase</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Arginine dihydrolase</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Alkaline phosphatase</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>Hydrogen sulfide production</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Esculin hydrolysis</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Tributyrine hydrolysis</td>
<td>-</td>
<td>ND</td>
</tr>
<tr>
<td>α-D-Galactosidase</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>β-D-Galactosidase</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>β-Xylosidase</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>α-D-Glucosidase</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>β-D-Glucosidase</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>α-D-Mannosidase</td>
<td>-</td>
<td>ND</td>
</tr>
<tr>
<td>β-L-Fucosidase</td>
<td>-</td>
<td>ND</td>
</tr>
<tr>
<td>N-Acetyl-β-D-glucosaminidase</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>β-D-Gluconidase</td>
<td>-</td>
<td>ND</td>
</tr>
<tr>
<td>Starch hydrolysis</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Tween 80 hydrolysis</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Lecithin hydrolysis</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Gelatin hydrolysis</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>DNase</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Acetate alkaline</td>
<td>+</td>
<td>100</td>
</tr>
<tr>
<td>Citrate alkaline</td>
<td>-</td>
<td>ND</td>
</tr>
<tr>
<td>Acetamide alkaline</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Malonate alkaline</td>
<td>-</td>
<td>ND</td>
</tr>
<tr>
<td>Phenylalanine deaminase</td>
<td>+</td>
<td>100</td>
</tr>
<tr>
<td>Alanine aminopeptidase</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>Pyrrolidonyl aminopeptidase</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>γ-Glutamyl aminopeptidase</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>Leucine aminopeptidase</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>Cystine aminopeptidase</td>
<td>+</td>
<td>ND</td>
</tr>
</tbody>
</table>

* Percentage of positive reactions as listed by Gilardi (3).
* According to Rubin et al. (19).
< ND, Not done.

faciens (11, 12). Since these bacteria are mostly associated with soil and plants, their isolation from clinical specimens is very rare. Nevertheless, Lautrop identified and characterized 10 isolates from clinical material (14); and Kiredjian isolated 10 other strains from blood, cerebrospinal fluids, and urine of human origin (13). Furthermore, Riley and Weaver, who studied Vd-3 bacteria from medical specimens and compared those isolates to strains of Agrobacterium, concluded that these bacteria were identical to *A. radiobacter* (18). Further strains of agrobacteria from clinical material were also characterized by Popoff et al. (17). In all these reports, the agrobacteria were usually isolated in association with other bacteria and therefore were considered to be contaminants; even when isolated in pure culture in some cases, no evidence that these organisms were pathogens was found. In only two reports, a case of prosthetic valve endocarditis and another of septicemia, were *Agrobacterium* spp. considered pathogens (2, 16).

It also has to be pointed out that significant cases of peritonitis caused by the *Agrobacterium* yellow group, a cluster of yellow-pigmented strains in the genus *Agrobacterium* (8, 20), in patients undergoing ambulatory peritoneal dialysis have been reported by Swann et al. (20).

Finally, it has to be mentioned that *A. radiobacter* was recently isolated from a culture of blood from a 20-year-old neutropenic woman (23); in this case, the Hickman line inserted into the right external carotid vein was considered to be the vehicle.

In our case, the repeated isolation of *A. radiobacter* from the CVC and an improvement after the catheter was removed strongly suggest colonization of the catheter lumen; some similarities between our observations and the case reported by Wilson et al. (23) are evident.

Since agrobacteria present particular susceptibility patterns, identification of these bacteria and distinction from other nonfermenters, especially *Pseudomonas, Alcaligenes*, and *Bordetella* spp. and *Achromobacter* group Vd, seem to be important. Conventional biochemical tests, such as rapid hydrolysis of urea and esculin and multiple clear-cut glycosidase activities (β-D-galactosidase and others) listed in Table 1, are very helpful. As previously pointed out by Freney et al. (2), *Agrobacterium* spp. are certainly organisms that may be added to the growing list of opportunistic bacteria.

LITERATURE CITED