Aerotolerant *Clostridium tertium* Brain Abscess following a Lawn Dart Injury

JUDY F. LEW,† BERNHARD L. WIEDERMANN,‡ JUDY SNEED,JOSEPH CAMPOS, and DAVID MCCULLOUGH

Departments of Infectious Diseases, Laboratory Medicine, and Neurosurgery, Children’s National Medical Center, 111 Michigan Avenue, N.W., Washington, D.C. 20010

Received 1 May 1990/Accepted 25 June 1990

A young girl developed an intracranial abscess and necrotizing cellulitis following penetrating injury from a lawn dart. Initial identification of a gram-positive rod growing aerobically from clinical specimens was as a *Bacillus* organism, but the observation that the isolate grew poorly in subcultures for susceptibility testing but quite well under standard anaerobic culture techniques led to the identification of the organism as an aerotolerant *Clostridium tertium*. Early management of penetrating head trauma should include cranial imaging studies to detect fractures and intracranial pathology. Clinical microbiologists and clinicians should be aware of the phenomenon of aerotolerance in anaerobic bacteria to avoid errors in choice of antibiotic therapy.

Aerotolerance is a term applied to strains of anaerobic bacteria that are able to tolerate oxygen to the extent that growth is possible under ambient atmospheric conditions. Although the pathogenetic significance of this characteristic is unknown, it poses a potential source of confusing and misleading information for the clinician when these organisms are associated with disease. We report a case of brain abscess from which an aerotolerant *Clostridium tertium* was isolated and review previous clinical experiences with these organisms.

An 8-year-old girl was struck in the forehead by a lawn dart, which appeared to pierce the skin. The dart was removed by family members, and she was taken to a local emergency room. A small laceration was cleaned and sutured. No radiographic studies were performed, and no antibiotics were administered. The child returned home, but over the next 2 days she experienced progressive bilateral periorbital swelling, decreased appetite, and fatigue. The edges of the wound then separated, and extrusion of purulent material was noted. The sutures were removed at the local emergency room, and she was transferred to Children’s National Medical Center.

At the time of admission, the child was afebrile, alert, and cooperative. Neurologic examination revealed no abnormalities. A cranial computed tomographic scan demonstrated a right frontal lobe abscess cavity with evidence of gas formation (Fig. 1). She received vancomycin, cefotaxime, and chloramphenicol and was taken immediately to the operating room. A necrotic-appearing, malodorous abscess cavity in the right frontal lobe was drained. Skin, bone, and dura mater were debrided.

Postoperatively, the patient did well, except for some evidence of poor healing of the skin incision. Histologic examination of the abscess cavity demonstrated interstitial hemorrhage in surrounding brain tissue, with the abscess wall and leptomeninges containing prominent blood vessels with septic thrombi, fibrinoid exudate, and polymorphonuclear infiltrates. She was taken for a second operative procedure, in which necrotic cutaneous tissue surrounding the wound was excised. Following this procedure, antibiotic therapy was changed to aqueous penicillin G alone, and she had an uneventful recovery. Two years after the injury, she remained asymptomatic on anticonvulsant therapy. Neurological examination was normal. There was a right frontal skull defect (2.5 by 3.5 cm), with pulsation.

Swab specimens from the frontal lobe abscess cavity were obtained for aerobic and anaerobic bacterial cultures and transported to the Clinical Microbiology Laboratory in Port-A-Cul tubes (BBL Microbiology Systems, Cockeysville, Md.). Brain tissue samples were sent in a sterile cup. Specimens were processed in room air and placed on Centers for Disease Control anaerobic blood agar with and without kanamycin and vancomycin and on Columbia colistin-nalidixic acid blood agar (BBL) and in prereduced anaerobically sterilized chopped meat glucose broth (Remel, Lenexa, Kan.). Incubation was in a GasPak system (BBL). Aerobic cultures were placed on standard solid media. Gram stains of the material showed many erythrocytes, few leukocytes (mostly polymorphonuclear leukocytes), and a moderate number of gram-variable rods. Initially, there was 1 to 2+ growth in the aerobic specimens of small gray colonies on both blood and chocolate agar plates. The organism was identified as a gram-positive rod, thought to be a *Bacillus* species. However, growth was poor in subcultures for susceptibility testing. Meanwhile, anaerobic cultures were showing growth of *Clostridium perfringens*, *Clostridium sordelli*, and *Clostridium tertium*, and the possibility of an aerotolerant *Clostridium* species masquerading as a *Bacillus* species was entertained. This was confirmed by demonstration that the aerobic isolate grew better anaerobically and was catalase negative and by identification as *C. tertium* by the Rapid-ANA system (Innovative Diagnostic Systems, Inc., Atlanta, Ga.).

Clostridia are gram-positive, sporeforming, anaerobic bacteria that are ubiquitous in the environment. These organisms are found in a variety of clinical syndromes, including traumatic injuries (3). *C. tertium*, *Clostridium histolyticum*, and *Clostridium carnis* are the three species of clostridia that have been reported to be aerotolerant previously (1). Their ability to grow aerobically causes them to be confused with *Bacillus* species, and inconsistent Gram stain characteristics...
wound infections may require extensive debridement, as illustrated by the case reported here. For our patient, suturing of the contaminated puncture wound without further evaluation at the time of injury may have contributed to the delay in recognition of deep infection. A skull radiograph obtained immediately after the injury most likely would have demonstrated a fracture at the site of entry and led to prompt surgical intervention.

More recently, *C. tertium* has been increasingly identified as an important cause of sepsis in immunocompromised patients. Speirs et al. reviewed 18 patients with hematologic malignancies and neutropenia who developed *C. tertium* sepsis (8). They noted that on 11 blood cultures, the organism grew in vented bottles and demonstrated growth under both aerobic and anaerobic conditions. Thaler et al. reported 10 patients with hematologic malignancies and *C. tertium* infections but did not comment on the frequency of aerotolerance observed (11). Two relatively recent case reports have commented on the confusion generated with aerotolerant *C. tertium* isolates in a 60-year-old woman with bacteremia following bowel surgery and a 48-year-old alcoholic man with aspiration pneumonia and bacteremia (5; J. Weiser, Clin. Microbiol. Newsl. 9:93–94, 1987). In both cases, the organism was mistaken for an aerobic gram-negative rod.

The role of aerotolerance in disease production is unclear, and the mechanisms by which oxygen inhibits the growth of or kills anaerobic bacteria is unknown. Although prior studies have focused on the role of bacterial catalase, peroxidase, and superoxide dismutase in this process, there has been no unifying theory that correlates the degree of oxygen sensitivity with bacterial enzyme production and pathogenicity (2). For now, the phenomenon of aerotolerance in anaerobic bacteria is primarily of importance to the clinical microbiologist so that proper identification and susceptibility testing of isolates can be done.

Recognition of the presence of aerotolerant *C. tertium* in clinical specimens is important in the determination of appropriate management. Although the isolate of our patient was susceptible to penicillin, Thaler et al. reported that only 6 of their 15 isolates had penicillin MICs of <1 µg/ml and only 8 of 15 had clindamycin MICs of <5 µg/ml (11). In their series, tetracycline, chloramphenicol, vancomycin, and metronidazole had MICs in the susceptible range for at least 90% of the isolates, although only five were tested for metronidazole susceptibility.

Lawn dart head injuries should be seen less frequently now that the sale of these “toys” was banned in April 1989 by the Consumer Product Safety Commission (Consumer Product Safety Commission Consumer Hotline, 1-800-638-2272). However, it should be expected that *C. tertium* infections will continue to be seen in association with contaminated wounds and in the immunocompromised host. Recognition of the aerotolerant nature of this bacterium is necessary to avoid delays or errors in appropriate antimicrobial therapy.

LITERATURE CITED

