Differentiation between *Trichophyton mentagrophytes* and *T. rubrum* by Sorbitol Assimilation

A. REZUSTA,† M. C. RUBIO, AND M. C. ALEJANDRE

*Department of Microbiology, Medical Faculty, University of Zaragoza, Zaragoza, Spain*

Received 15 February 1990/Accepted 5 October 1990

*Trichophyton rubrum* was easily differentiated from *T. mentagrophytes* by its ability to assimilate sorbitol with an API 20C AUX strip. One hundred percent of 36 *T. rubrum* strains and none of 147 *T. mentagrophytes* strains assimilated sorbitol.

Pleomorphism and inconsistent conidiation or a lack of conidiation pose major problems for mycologists attempting to identify certain dermatophytes. Until recently, their identification was based almost exclusively on morphologic criteria. In recent years, biochemical tests have proved useful in distinguishing certain dermatophytes.

The recognition of *Trichophyton mentagrophytes* and *T. rubrum* as the predominant species of dermatophytes causing infections in humans (3, 4, 6, 8, 9, 11, 13, 14, 17, 19, 20, 27, 29, 32) has made the differentiation of these two taxa increasingly important. The differentiation of *T. rubrum* and *T. mentagrophytes* is difficult in some situations. Potential solutions include in vitro hair perforation test (1, 2, 23, 32), urea hydrolysis (18, 24), pigment production on cornmeal agar (5), bromocresol purple-alkaline-phosphate medium (33), gel immunodiffusion with antisera (10), and others.

In 1923, Hopkins and Iwamoto (15), using the assimilation of various carbon compounds as sole carbon sources, found that differences in the ability to assimilate the compounds depended upon the species as well as the strain. Differences in the techniques used by various authors (16, 22, 25, 28, 34) yielded different results. We have taken advantage of the proven API 20C yeast identification system to differentiate *T. rubrum* from *T. mentagrophytes* by using differences in their ability to assimilate different compounds. In addition to the identification of yeasts, the API 20C system has been used to differentiate some dematiaceous fungi (12) and dermatophytes (7).

One hundred seventy-eight clinical strains isolated by ourselves and five control strains, *T. rubrum* (ATCC 21188), *T. mentagrophytes* (ATCC 21185), *Athroderma benhamiae* (+) (CBS 80872), *A. benhamiae* (−) (CBS 80772), and *A. benhamiae* (+) (11370; Dr. Pereiro's collection), were used in this study. Fungal cultures were identified on the basis of macroscopic and microscopic appearances (21, 26) and in vitro hair perforation (1).

The API 20C AUX system (API, Lyon, France) was used in accordance with the manufacturer’s instructions. The strip consists of 1 control cupule and 19 cupules containing different dehydrated substrates: glucose, glycerol, 2-keto-D-glucuronic, L-arabinose, xylose, adonitol, xylitol, galactose, inositol, sorbitol, alpha-methyl-D-glucoside, N-acetylglucosamine, cellobiose, lactose, maltose, sucrose, trehalose, melezitose, and raffinose. Mature (7- to 14-day) cultures grown at 30°C on modified Sabouraud glucose agar were used as a source of inoculum suspensions. Mycelia and conidia were used to prepare a suspension by mixing the fungus with 20 glass balls (3-mm diameter) and 5 ml of sterile distilled water. The suspension was mixed on a vortex mixer until a density equal to a McFarland no. 3 standard was obtained. From this suspension, 0.5 ml was transferred to 6 ml of API 20C AUX agar medium and inoculated on the strip. We are fairly certain that we did not transfer clumps, but if we did, they were less than 1 mm in size. The cupules, including the control, were filled with the suspension by use of a sterile Pasteur pipette; we ensured that the medium remained convex. The strip was immediately placed in a humid chamber for 7 days and incubated at 30°C. Only the 7-day readings were used for the final analysis.

Of the 19 carbon compounds studied, the following were not assimilated by any of the species tested: glycerol, 2-keto-D-glucuronic, L-arabinose, xylose, adonitol, xylitol, inositol, alpha-methyl-D-glucoside, lactose, sucrose, melezitose, and raffinose. The carbon compounds assimilated are shown in Table 1.

Four of the reference strains, *T. mentagrophytes* (ATCC 21185), *A. benhamiae* (+) (CBS 80872), *A. benhamiae* (−) (CBS 80772), and *A. benhamiae* (+) (11370), had the same biotypes (glucose, N-acetylglucosamine, cellobiose, and trehalose positive).

For expression of the biotypes, a code was determined in the same manner as that stipulated by the manufacturer for yeasts. We divided the substrates into groups of three and evaluated them in the same manner as the manufacturer, giving a value of 0, 1, 2, and 4 to each of the substrates in each group. For example, 2000340 refers to *T. mentagrophytes* and 2002340 refers to *T. rubrum*. We considered the biotype to be positive when the percentage of positive strains exceeded 84% of all strains studied (30).

We selected an incubation period of 7 days, as it appeared to suit the majority of the species studied. *T. rubrum*, in particular, showed limited growth prior to the end of the incubation period. The API 20C system allows the differentiation of *T. mentagrophytes* and *T. verrucosum* (7). Our results demonstrate that *T. rubrum* and *T. mentagrophytes* can be differentiated on the basis of sorbitol assimilation alone. *T. mentagrophytes* does not grow within 7 days, whereas *T. rubrum* does. A few strains of *T. mentagrophytes* (4.86%) grew to an extremely limited degree because of carry-over in the sorbitol cupule; it was evident, however, that *T. mentagrophytes* did not use this substrate, on the basis of a comparison with the glucose control.

All *T. mentagrophytes* strains were positive and all *T.
rubrum strains were negative in the hair perforation test. The assimilation of sorbitol is as reliable as the hair perforation test, a technique considered excellent (23, 31). The advantage of using the API 20C system as a complement to studies of morphology is that the assimilation results are available in 7 days, in contrast to the 28 days needed by T. rubrum for a negative hair perforation test. The application of API 20C for the differentiation of T. rubrum and T. mentagrophytes reduces time, and the system is easy to use.

REFERENCES