Bacillus piliformis Flagellar Antigens for Serodiagnosis of Tyzzer’s Disease

SHERRI L. MOTZEL* AND LELA K. RILEY

Department of Veterinary Pathology, W213 Veterinary Medicine, University of Missouri, Columbia, Missouri 65211

Received 3 June 1991/Accepted 23 August 1991

Purified flagella from multiple isolates of Bacillus piliformis were obtained and examined by electron microscopy. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot (immunoblot) analyses were used to assess the purity, antigenicity, and cross-reactivity of purified flagellar preparations. SDS-PAGE demonstrated a single, major protein band evident at approximately 53 to 56 kDa in all isolates tested. Results of Western blot analyses indicated a lack of cross-reactivity between flagellar antigens and heterologous isolates. Enzyme-linked immunosorbent assays (ELISAs) were used to compare the efficacies of flagellar preparations from the various isolates as antigens in detecting B. piliformis serum antibodies from several host species. ELISA results indicated that no single flagellar preparation could be relied on to consistently identify serum antibodies in all the host species tested; however, ELISAs that utilized a trivalent flagellar antigen preparation were shown to be specific and sensitive for the detection of antibodies to B. piliformis.

Bacillus piliformis, the etiologic agent of Tyzzer’s disease, is a filamentous, weakly gram-negative, sporeforming, obligate intracellular bacterium which is pertrichously motile. It was first described by Ernest Tyzzer in 1917 as the etiology of fatal enterohepatitis of mice (15). Tyzzer designated B. piliformis on the basis of its morphology; it has never been biochemically characterized and may require reclassification. Tyzzer’s disease has since been reported in a wide range of laboratory, domestic, and wild animals (7). Economic and scientific losses attributed to epizootic infections in laboratory animals have been devastating in terms of mortality and disruption of experimental studies (6). Although clinical Tyzzer’s disease has not been reported in humans, spontaneous infection has occurred in a rhesus monkey (10) and antibodies to B. piliformis have been found in women (2), suggesting that B. piliformis infections may occur in humans.

Animals clinically infected with Tyzzer’s disease may experience lethargy and a watery to pasty diarrhea. Death may occur within 2 to 3 days after the onset of illness, and no reliable treatment has been reported for clinical B. piliformis infections. Subclinical infections with B. piliformis are thought to be widespread (2). Animals latently infected may develop overt disease when subjected to stress (11, 16). The prevalence of infection in research animals has only been estimated, since accurate diagnosis of Tyzzer’s disease has been difficult. The obligate intracellular nature of this pathogen has hindered in vitro propagation, so little work has been done to characterize the organism or improve diagnostic assays to detect clinical and subclinical infections. Histologically, the organism is difficult to detect in tissue sections routinely stained with hematoxylin-eosin; silver stains, such as Warthin-Starry, are usually required to demonstrate the organism in acutely infected liver or cecum (6). Serological diagnosis has been hampered because of the lack of cross-reactivity among isolates of B. piliformis. Antigenic heterogeneity among isolates has been well documented (3-5, 12). A recent study by Riley and colleagues identified immuno-

* Corresponding author.

MATERIALS AND METHODS

Bacterial cultivation. The isolates of B. piliformis used in this study were recovered from naturally infected animals as previously described (12). Isolates from acutely infected animals included isolate R1 from a rat from Japan; isolate R2 from a rat from Indiana; isolates G and H from a gerbil and a hamster, respectively, from Missouri; isolate GP from a guinea pig from Wisconsin; isolate E from a horse from Kentucky; and isolate B from a rabbit from Maryland. Isolate M was collected from a latently infected mouse from New York. Isolate B was grown in a mouse embryonic fibroblast cell line, 17 clone 1 (Lawrence Sturman, Albany, N.Y.); all other isolates were grown in a rat hepatic cell line, BRL 3A (Buffalo rat liver; American Type Culture Collection, Rockville, Md.).

Cultures were grown at 37°C in Dulbecco’s modified eagle’s medium (Sigma Chemical Co., St. Louis, Mo.) supplemented with 10% Serum-Plus (Hazelton, Lenexa, Kans.) and 1% L-glutamine (Sigma) (12). Monolayers were scraped and harvested when B. piliformis concentrations were 10⁵ to 10⁶/ml. Bacterial suspensions were sonicated on ice for three 30-s bursts to lyse mammalian cells and release
intracellular B. piliformis. Mammalian cells were removed by centrifugation at 200 × g for 5 min at 4°C, and bacteria were pelleted by centrifugation of the supernatant at 12,000 × g for 30 min at 4°C. Bacterial pellets were washed by resuspension in phosphate-buffered saline (pH 7.2) (PBS) and repetition of the final step. Unless otherwise noted, bacterial pellets were stored at −20°C.

Flagellar preparations were collected by a technique previously described (1). Bacterial pellets were suspended in 5 to 10 ml of Tris buffer (0.1 M Tris, pH 8.0), and flagella were sheared with an Omni-Mixer (Omni-International, Inc., Waterbury, Conn.) on speed setting 5 (approximately 8,000 rpm) for 60 s on ice. The resulting suspensions were centrifuged at 12,000 × g for 30 min at 4°C to pellet cell debris. Supernatants were recovered, and the centrifugation step was repeated twice to pellet remaining cell debris. Sheared flagella were sedimented by ultracentrifugation at 55,000 × g for 5 min at 4°C. Pellets were resuspended in Tris buffer and again centrifuged at 12,000 × g for 30 min at 4°C to remove residual cell debris. Supernatants were decanted, and the ultracentrifugation step was repeated. Flagellar pellets were resuspended in 0.5 ml of Tris buffer and stored at −20°C until used.

Electron microscopy. Sheared B. piliformis preparations pelleted at 12,000 × g and flagellar preparations pelleted at 55,000 × g were examined by electron microscopy. In brief, a small droplet of sample in a 4% solution of sodium phosphotungstate was deposited on a carbon-coated grid, and the negatively stained material was subjected to transmission electron microscopy.

SDS-PAGE and Western blotting. Five micrograms of B. piliformis flagellar preparations from the various isolates per lane was subjected to electrophoresis at a constant current of 40 mA on SDS-PAGE gels (8). Gels were stained with Coomassie blue to visualize protein-containing bands.

Flagellar preparations of B. piliformis were electrophoretically separated as described above and transferred to nitrocellulose membranes for Western blotting (14). Nitrocellulose membranes were blocked with a 5% nonfat dry milk solution in PBS and probed with hyperimmune sera. Anti-gen antibody complexes were detected by sequential incubations with species-specific, affinity-purified, biotinylated secondary antibody (Vector Laboratories, Burlingame, Calif.) and avidin-biotin-peroxidase conjugate (Vector). Immunoreactive proteins were visualized with a solution of tetramethylbenzidine peroxidase substrate, peroxidase substrate solution B (0.02% hydrogen peroxide in citric acid buffer), and tetramethylbenzidine membrane enhancer (Kirkegaard and Perry Laboratories, Inc., Gaithersburg, Md.). Staining reactions were terminated by exhaustive washing of the nitrocellulose in deionized water.

Hyperimmune sera. A B. piliformis-free New Zealand White rabbit was immunized subcutaneously and intramuscularly with Formalin-treated, B. piliformis-infected liver suspension emulsified in complete Freund's adjuvant as described previously (12). The rabbit was boosted with infected liver suspension in incomplete Freund's adjuvant 1 month later, and serum was collected 1 week after booster immunization.

Serum samples. Sera were obtained from animals routinely submitted for clinical evaluation to the University of Missouri Research Animal Diagnostic and Investigative Laboratory. Animals diagnosed with Tyzzer's disease via characteristic clinical signs and histopathological evidence of Tyzzer's bacillus in Warthin-Starry silver-stained tissue sections were found seropositive by an ELISA (9) with whole B. piliformis isolate R1 as the antigen source. Animals from colonies with no history of outbreaks of Tyzzer's disease were found seronegative by this ELISA.

Serum was also obtained from rats and mice experimentally inoculated with B. piliformis (9). Rats were inoculated with either isolate R1 or isolate R2, and mice were inoculated with isolate M.

ELISAs. ELISAs were performed with a minor modification (9): B. piliformis flagellar preparations were used instead of whole bacterial lysates. Serum samples were determined to be positive for antibodies to B. piliformis when ELISA absorbance values were at least twice the baseline values for serum samples for that species. Baseline values were calculated as 3 standard deviations above the mean absorbance value for approximately 100 known negative serum samples. All assays were performed in duplicate and repeated three times for each sample, and the mean absorbance value was reported.

RESULTS AND DISCUSSION

Electron microscopy. Transmission electron microscopy confirmed that flagella were successfully sheared from B. piliformis. Numerous flagella up to 4 μm in length were seen attached to unshedded B. piliformis organisms (Fig. 1A). In contrast, most flagella were removed by shearing; only a few stubbles of flagella remained (Fig. 1B). Many B. piliformis organisms were completely denuded of flagella after shearing. Flagellar fragments of various lengths were seen with little contaminating cell debris in purified flagellar preparations (Fig. 1C). While flagella were successfully sheared from B. piliformis samples that had been frozen, fresh bacterial samples remained mostly covered with flagella after shearing. We determined by electron microscopic examination of frozen bacterial preparations that freezing itself did not cause flagella to break off of the organisms, but we believe that freezing made the flagella more susceptible to mechanical shearing.

SDS-PAGE and Western blotting. Flagellar preparations from several B. piliformis isolates were subjected to electrophoresis on polyacrylamide gels and stained with Coomassie blue. In all cases, a 53- to 56-kDa major protein band was evident (Fig. 2). This banding pattern confirmed that our flagellar preparations were composed of a major protein which electrophoretically migrated at a mass consistent with the reported mass of the major flagellar protein of B. piliformis (53 to 56 kDa) (13). Minor differences in the migration of the major protein band were noted and may be indicative of heterogeneity among isolates.

Western blotting was used to compare antigens from different flagellar preparations. Flagellar preparations from several B. piliformis isolates were subjected to SDS-PAGE, transferred to nitrocellulose, and probed with hyperimmune sera raised against B. piliformis. Representative results of Western blot analyses are shown in Fig. 3. An immunodominant antigen was evident in all lanes at approximately 53 to 56 kDa. Flagellar preparations probed with anti-isolate H hyperimmune sera showed more intense staining in lanes with isolates G and GP, indicating greater cross-reactivity between flagellar preparations from isolates G and GP and anti-isolate H antibodies (Fig. 3A). Similarly, flagellar preparations probed with anti-isolate R1 hyperimmune sera showed more intense staining in the lane containing the homologous flagellar protein from isolate R1 than in lanes with heterologous ones (Fig. 3B). Western blots were overexposed to enhance the visualization of less cross-reactive
isolates. Results of our Western blot evaluations indicated that flagellar antigens might not have sufficient cross-reactivity among heterologous isolates to allow a single flagellar antigen to be used in the serological testing of animals infected with all isolates.

ELISAs. Flagellar preparations from *B. piliformis* isolates were used as antigens in ELISAs to test sera from several animal species. ELISAs were developed with flagellar preparations from individual *B. piliformis* isolates as the antigen sources. Serum samples from rats, mice, hamsters, and rabbits were tested in these flagellar antigen ELISAs, and the results were compared with those obtained in the *B. piliformis* R1 whole-antigen ELISA (9). Negative control
serum samples were obtained from animal colonies historically free of Tyzzer’s disease, as determined by repeated histopathological monitoring. Serum samples which were negative in the B. piliformis R1 whole-antigen ELISA were also negative in ELISAs with flagellar antigens. Representative ELISA results for serum samples which were positive in the B. piliformis R1 whole-antigen ELISA are shown in Table 1. No single flagellar preparation could be relied on to consistently identify serum antibodies in all the host species tested. The lack of cross-reactivity between flagellar preparations and serum samples from heterologous species is consistent with the results of Western blot analyses. These differences may be due to genetic drift among isolates and may indicate that the organisms have become adapted to different host species. While ELISAs based on two flagellar preparations were evaluated (data not shown), a combination of three flagellar preparations was needed to consistently serodiagnose B. piliformis antibodies in a wide variety of host species. A trivalent ELISA with R1, G, and M flagellar antigen preparations detected serum antibodies in 17 of 17 serum samples from naturally infected animals with histopathologically confirmed Tyzzer’s disease.

Relatively few serum samples were available from animals which were naturally infected, had clinical signs of Tyzzer’s disease, and also had histopathological evidence of B. piliformis. Animals clinically ill and with histopathological confirmation of Tyzzer’s disease are often at or below weaning age and are usually too young to have serum antibodies. Adult animals seropositive for B. piliformis are usually subclinically infected, and disease cannot be confirmed histopathologically. Because a limited number of serum samples from animals naturally infected with B. piliformis were available, we tested serum samples from rats and mice experimentally infected in other studies with B. piliformis. Fifty-seven rats were inoculated with isolate R1, 21 rats were inoculated with isolate R2, and 25 mice were inoculated with isolate M. All postinoculation serum samples were positive in the B. piliformis R1 whole-antigen ELISA. In the trivalent flagellar antigen ELISA, 55 of 57 serum samples from rats inoculated with isolate R1 were positive, 21 of 21 samples from rats inoculated with isolate R2 were positive, and 25 of 25 samples from mice inoculated with isolate M were positive. The trivalent flagellar antigen ELISA was less sensitive than the whole-antigen ELISA, as indicated by false-negative reactions obtained in two of the rat serum samples that were positive in the whole-antigen ELISA but negative in the trivalent flagellar antigen ELISA. The trivalent flagellar antigen ELISA had a calculated sensitivity of 98% and a calculated specificity of 100%.

Our laboratory recently reported that serum antibodies to B. piliformis could be detected in subclinically infected rats and mice with an ELISA (9). However, we surmised that antigenic heterogeneity among B. piliformis isolates might hamper the ability of a test relying on an antigen from a single isolate to diagnose infection in a wide variety of host species. An additional disadvantage of the ELISA that we describe in this study is that the antigen source is a lysate of B. piliformis organisms which, being obligately intracellular, must be grown in cell cultures. The laboriousness of growing and harvesting the bacillus hampers the production of large quantities of an antigen for diagnostic testing and precludes the widespread availability of the test. A more economical antigen preparation is needed for diagnostic use. Shared immunodominant antigens, such as the flagellar antigens identified, might prove useful in the improvement of serological tests to diagnose B. piliformis infections. Studies are currently under way in our laboratory to identify and clone the genes coding for these flagellar proteins; expressing them in Escherichia coli will allow the production of large quantities of highly specific antigens which will be used for the development of an improved ELISA and for providing a reliable supply of bacterial components. These advancements will facilitate the diagnosis of Tyzzer’s disease and its estimation of its prevalence and will assist in the characterization of the organism.

ACKNOWLEDGMENTS

We thank Preston L. Stogsdill for electron microscopy and Howard A. Wilson for photography.

This work was supported in part by grants DHHS 5 T32 RR07004-13 and DHHS 1 R29 RR04568-03.

REFERENCES

TABLE 1. Comparison of ELISA absorbance values obtained with whole B. piliformis, a single flagellar preparation, or a trivalent flagellar preparation as the antigen source

<table>
<thead>
<tr>
<th>Animal</th>
<th>Whole organism preparation (R1)</th>
<th>Single flagellar preparation</th>
<th>Trivalent flagellar preparation (R1, G, and M)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R1 GP G E M B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat</td>
<td>2.82 2.79 1.5 0.96 0.09 1.44 0.16 2.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse</td>
<td>0.90 0.25 0.07 0.07 0.38 0.36 0.37 0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamster</td>
<td>0.55 0.12 0.73 0.55 0.24 0.11 0.14 0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit</td>
<td>1.26 0.90 1.09 0.91 0.33 0.40 0.34 0.97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Boldfacing indicates absorbance values that were seropositive, as explained in Materials and Methods.

