Evaluation of a Rubella Hemagglutination Inhibition Test System

JOHN A. SMITH* AND ALVIN C. CUMMINS

Division of Microbiology, Mount Sinai Hospital, Toronto, Ontario M5G 1X5 Canada

Received for publication 14 August 1975

Two systems for measurement of rubella hemagglutination inhibition antibodies were compared. One had chick erythrocytes as indicator and the other, which is available in kit form ("Rubindex," Ortho-Diagnostics), uses human group O erythrocytes. Correlation to within one dilution of each other was noted in 92% of the tests. The Rubindex system has the advantage of longer shelf life of reagents and also does not require one of the absorption steps necessary for the other method, thus saving technologist’s time.

The importance of determining immunity to rubella virus and the diagnosis of active infection have gained considerable importance since recognition of the teratogenicity of this infection (2). The demand for rubella hemagglutination inhibition antibody testing has increased greatly in recent years and now constitutes a major portion of the work load of the diagnostic serology section of our hospital. The test is one that demands rapidity of performance, together with reproducibility and reliability of results, and with this in mind it was decided to compare the existing method of serological testing in our hospital with a new hemagglutination inhibition test system, "Rubindex" (Ortho-Diagnostics).

MATERIALS AND METHODS

Preexisting system. For convenience, the preexisting system will be referred to throughout this report as the "chick method."

The rubella hemagglutinin was obtained from Connaught Laboratories Limited and was prepared from an HPV-77 strain of rubella virus supplied in freeze-dried form. Each sample of hemagglutinin was reconstituted with 1.0 ml of distilled water, was used immediately, and was not stored beyond the day of the test.

Erythrocytes from 1- to 3-day-old unfed chicks were obtained from Connaught Laboratories. These were supplied in Alsever solution and stored at 4°C up to a maximum of 2 weeks. These cells were used as the indicator system. Before use, all erythrocytes were washed three times in dextrose-gelatin-veronal buffer and a final dilution of 0.25% based on packed-cell volume was made up in N/2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES) buffer at pH 6.2.

All antigen and serum dilutions were made in HEPES buffer. Serum samples for testing were prepared as follows: 0.05 ml of a solution containing 5,000 U/ml of sodium heparin and 0.05 ml of 1 M manganous chloride were added to 0.15 ml of the serum sample. The mixture was gently agitated and centrifuged at 2,000 rpm (900 × g) for 15 min at 4°C in a refrigerated centrifuge. Then, 0.1 ml of a 50% suspension of mature chick erythrocytes was added. The tubes were gently agitated to disperse the erythrocytes and incubated for 1 h at 4°C. Thereafter, 0.4 ml of HEPES buffer was added, and the tubes were gently mixed and centrifuged at 2,000 rpm for 20 min. The supernatant was removed from the tubes, taking care not to disturb the precipitate and pellet of erythrocytes. The resulting fluid was then 1:8 dilution of treated serum sample.

Rubindex. Four kits of 100 tests each, manufactured over a period of 3 months, were used in the study.

The hemagglutinin was supplied in liquid form and was diluted before use to 1:16 in Rubindex diluent. The concentrations of sodium heparin and manganous chloride in the kit solutions were the same as in the method described above.

The indicator erythrocytes in the Rubindex system were human group O Rh-negative erythrocytes selected by the manufacturer from a panel of donors and pretreated with trypsin and dispensed as a 4% solution. These cells were diluted 1:16 in Rubindex diluent. The patients' sera were treated with sodium heparin and manganous chloride solutions as in the chick method; test sera did not require absorption with erythrocytes. After treatment with manganous chloride and sodium heparin, sera were centrifuged at 900 × g for 15 min, after which the supernatants were removed, taking care not to disturb the precipitate.

Test procedures. Hemagglutinin was titrated, and sera were diluted as described in the procedural guide issued by the U.S. Department of Health (1). V-bottom microtitration plates (Cooke Engineering Inc.) were used in both test systems. The only difference between the two procedures was that the Rubindex tests, after addition of the indicator cells, were incubated at room temperature for 1 h, whereas our conventional method required incubation at 4°C for 1 h followed by 15 min at room temperature before results could be read.

Controls. Serum, cell, and antigen controls,
negative serum controls, and low—(1:16) and high-
titer-positive controls (1:128) were incorporated in
the test.

End points. In both test systems, complete inhibi-
tion of agglutination was taken as the end point
of the titration.

Test sera for evaluation. The 275 sera that were
tested were from two main sources: 125 routine
test sera entering the diagnostic serology labora-
tory were tested as they arrived by both test systems.
In addition, 150 sera previously tested for rubella
antibody and stored at −70 C were retrieved,
thawed, and retested by both systems. All sera were
less than 6 months old.

The person reading the results of one test system
was not aware of the titers obtained by the person
using the other test method until completion of the
study, when comparison of data, including previ-
ously obtained titers, was made.

Discrepant results. Since we anticipated that
some tests might give discrepant results in deter-
imining immunity, it was decided to repeat such
tests and to refer persistently discrepant sera to
another laboratory for arbitration by fluorescent
antibody testing.

RESULTS

Of the sera tested, 18 had to be retested be-
cause of poor serum controls or erratic patterns
of agglutination. Of these, five were excluded
from further study because of persistent agglu-
tination in the serum controls with the chick
erthrocytes. Of the remaining 13 specimens,
there was no change in titer with the Rubindex
system. On the other hand, six of those tested
by the chick method showed no change in titer,
six changed by one dilution, and one changed
by two dilutions (Table 1).

In 142 (54.2%) of 262 sera (Table 2), the titers
obtained with the two test methods were identi-
cal. The titers observed with the Rubindex
system exceeded those noted in the chick
method by one dilution in 86 (32.8%) test sera,
by two dilutions in 18 (6.9%), and by three
dilutions in three (1.1%). There were 13 sera
(5%) in which the Rubindex titer was less by
one dilution than that seen in the chick erythro-
cytes method; in no case was there a greater
difference. Thus, the two systems gave results
within one dilution of each other in 92% of cases.

In distinguishing immune from nonimmune
patients based on a titer of less than 1:16, there
were two sera in which the Rubindex method
indicated immunity, and the chick method
disagreed. On repeat testing, however, the chick
method titer changed to match that of Rubin-
dex. The titers obtained with both methods are
shown in Fig. 1.

DISCUSSION

The titers obtained with the two methods
described were fairly similar. However, there
appear to be distinct advantages to the use of
Rubindex. Some of the advantages of human
erthrocytes over chick erythrocytes, as de-
scribed by others (3), were confirmed, notably
their stability for 4 weeks compared with a
maximum of 2 weeks for chick erythrocytes.
A second advantage was the elimination from
Rubindex of the absorption of test sera with
mature chick erythrocytes. Pretitration of anti-
gens and its stability over 4 weeks resulted in
time saving in the laboratory.

The test systems behaved in an almost identi-
cal fashion in determining immunity of patients
based on hemagglutination inhibition titers of
1:16 or greater. The costs of the two systems
were approximately the same.

The use of Rh-negative erythrocytes elimi-
nated the possibility of nonspecific hemagglu-
tination. Cold agglutinins could also give rise
to nonspecific hemagglutination, and some
workers (3) have suggested that this could be
avoided by conducting the final phase of incuba-
tion at 37 C. However, we chose to rely on the
likelihood of cold agglutinins absorbing onto
erthrocytes as the blood was allowed to clot at
4 C before removing the serum, together with
incubation of the test at room temperature.
Perhaps future studies of the use of the Rubin-
dex system may involve incubation at 37 C in
the final phase as an added safeguard.

Further studies will be conducted to test the
stability and dependability of the Rubindex kit
over a more prolonged period of time.

ACKNOWLEDGMENTS

We thank Lawrence Russ, Bruce Beamer, and Ray Lim
for advice and assistance. We thank Ortho-Diagnostics for
a gift of Rubindex test kits.
Fig. 1. Hemagglutination-inhibition titers obtained with the Rubindex and chick methods.

LITERATURE CITED