Phenotypic Profile and Functional Characteristics of Human Gamma and Delta T Cells during Acute Toxoplasmosis

P. DE PAOLI,* G. BASAGLIA, D. GENNARI, M. CROVATTO, M. L. MODOLO AND G. SANTINI

Department of Microbiology and Immunology, General Hospital USL11, Pordenone, Italy

Received 28 January 1991/Accepted 16 December 1991

Gamma and delta (γδ) T-cell receptor lymphocytes are increased during acute toxoplasmosis. These cells are BB3CD54ROCD8+. Purified γδ T cells failed to proliferate in response to Toxoplasma gondii antigen (stimulation index, 1.4 ± 0.6) but were responsive to phytohemagglutinin stimulation (stimulation index, 20.8 ± 1.9). Natural-killer-like cytotoxicity was strongly acquired only after in vitro culture of purified γδ T cells with recombinant interleukin 2 (40% ± 7% specific lysis). Our data show that γδ T-cell receptor T cells with a peculiar phenotype are increased during human acute T. gondii infection.

Two structurally distinct types of CD3-associated T-cell receptor (TCR) exist. Most peripheral blood T lymphocytes express the alpha-beta heterodimer, while a minor population is characterized by expression of the gamma-delta (γδ) heterodimer (4, 17). γδ T cells in the peripheral blood express mainly the Vγ9-Vβ2-encoded TCR, while a minority of these cells bear the δ chain encoded by the Vβ1 gene segment (17). γδ T cells are usually CD4-CD8-. CD45RO+ CD25+ (7, 13).

The antigenic response and the functional role of γδ T cells have been recently clarified. An increase of this subset has been found in the peripheral blood of patients with congenital or acquired immunodeficiencies (5, 14, 18); in vivo and in vitro studies suggest an important role of γδ T cells in generating an immune response to certain microbial antigens (6, 8, 12). A portion of this response may be directed against some bacterial or human peptides, such as heat shock proteins (2, 8) or the staphylococcal enterotoxin A microbial superantigen (12).

We will show here that infection with Toxoplasma gondii is characterized by the expansion of γδ T cells preferentially expressing the Vγ9-Vβ2 gene-encoded receptor.

The study group consisted of 12 subjects (six males and six females; mean age, 28 ± 8 years) with acute T. gondii infection. These patients were found to have evidence of acute Toxoplasma infection with high levels (titers from 1/128 to 1/1,024) of immunoglobulin M-specific antibodies by immunofluorescence assay. Immunoglobulin G titers ranged from 1/128 to 1/4,096. All of the patients (normal, nonimmunosuppressed hosts) had lymphadenopathy, while four also had fever and malaise. All of the laboratory investigations were performed within 3 weeks after the onset of symptoms. The control population consisted of healthy, sex- and age-matched donors without clinical or serological (immunoglobulin M positivity) signs of toxoplasmosis.

The peripheral blood was layered on Plasmagel for 30 min, and the leukocyte-rich buffy coat was then recovered. Fluorescein isothiocyanate- or phycoerythrin-conjugated CD4 (OKT4; Ortho), CD8 (OKT8; Ortho), CD45RO (UCHL1; Dako), CD45RA (Leu18; Becton Dickinson), CD25 (IL2R; Becton Dickinson), and TCR81 (T Cell Science) monoclonal antibodies were used. When nonconjugated BB3 or A13 (gifts of L. Moretta, Genoa, Italy) monoclonal antibodies were used, a second incubation with phycoerythrin-conjugated rat anti-mouse serum was performed. Fluorescence was measured on a FACScan flow cytometer. Controls included fluorescein isothiocyanate- or phycoerythrin-conjugated mouse immunoglobulins. Cells (10,000) were acquired in the list mode of the Consort 30 computer.

Mononuclear cells were separated after Ficoll-Paque centrifugation. Cells were incubated for 30 min at 4°C with appropriate amounts of anti-CD4, anti-CD8, anti-CD16, and anti-CD19 monoclonal antibodies; after being washed, the cells were incubated at 4°C with continuous mixing with rabbit anti-mouse immunoglobulin-coated magnetic beads (Dynabeads; Unipath). Rosetting cells were removed with a magnet (3). After separation, more than 90% of the cells were γδ+ (TCR81+).

Total mononuclear cells or γδ-enriched T cells plus autologous monocytes (10%) were incubated with T. gondii antigen (prepared from tachyzoites by sonication at 1.0, 0.1, or 0.01 μg/ml; Sorin Biomedica) or phytohemagglutinin (PHA) (100, 30, or 10 μg/ml; Gibco) in microtiter wells at 10⁶ cells per mm². [3H]Thymidine uptake was measured at day 3 of incubation. The stimulation index (S.I.) was calculated as follows: S.I. = Mean counts per minute for stimulated samples/ Mean counts per minute for unstimulated samples.

A standard ⁵¹Cr release was used to measure lytic activity against the K562 cell line. Target cells were labelled by incubation at 37°C for 1 h with Na₂⁵¹CrO₄ (specific activity, 5.0 mc/ml; Amersham). A portion of γδ T cells was cultured for 3 days in RPMI 1640 medium containing 200 IU of recombinant interleukin 2 (Boehringer B.R.).

Effector cells (resting and lymphokine-activated) were incubated with labelled targets at a 25:1 effector/target ratio at 37°C overnight.

Percent cytosis was calculated as follows: % Cytosis = [(Experimental release - Spontaneous release)/(Total release - Spontaneous release)] × 100.

Total release was determined by addition of an HCl lysing solution.

Patients acutely infected with T. gondii show a distinctive phenotypic profile (10). The TCR81 antibody, a pan-γδ T-cell marker, recognized 10.3% ± 3% of total lymphocytes (321 ± 145 cells per mm²; P < 0.005 compared with healthy controls) (Table 1). Similar results were obtained with patients irrespective of clinical symptoms or disease duration or chronicity.

γδ T cells were further analyzed by double immunofluo-
rescence flow cytometric studies. BB3 cells preferentially coexpressed the CD45RO antigen (6.6 ± 0.7), while the percentage of CD45RA was not different from that of controls (Table 2). Only 0.3% ± 0.2% of the cells were BB3+ CD8+.

Total mononuclear cells from patients did proliferate (S.I., 9.7 ± 2; Table 3) in response to 1 μg of Toxoplasma antigen per ml, while no proliferation in response to the same antigen concentration was found in the γδ T-cell-enriched population from patients (S.I., 1.4 ± 0.6) and healthy controls (Table 3).

TCR γδ lymphocyte responses to the mitogen PHA were similar in acutely Toxoplasma-infected patients and normal controls (S.I., 20.6 ± 1.9 versus 9.9 ± 9.5; not statistically significantly different) (Table 3).

Freshly isolated γδ T cells from three patients with toxoplasmosis had a low degree of cytotoxicity (14.7% ± 9.1% versus 9.7% ± 11% cytotoxicity in normal controls) at a 25:1 effector/target ratio. After 48 h of culture with interleukin 2, γδ T cells from both Toxoplasma-infected patients and normal controls acquired a significant degree of cytotoxicity (40.2% ± 11.1% in patients and 29.7% ± 11.3% in normal controls; not statistically significantly different in patients versus controls).

Data obtained in vitro and in vivo indicate that cell-mediated immunity is important in the control of T. gondii infection (9–11).

We have analyzed the phenotypic and functional profile of γδ T cells in the peripheral blood of patients acutely infected with T. gondii. These cells are BB3+ (V82+) CD45RO+, this phenotype has been associated with a population of memory T cells (1, 13, 15), and a role of γδ T cells in the immune response to many pathogens has therefore been postulated (15).

Functional analysis of γδ T cells purified from patients with acute toxoplasmosis showed that they proliferated in response to PHA. These cells are not spontaneously cytolytic but do lyse K562 target cells after lymphokine stimulation, as do γδ T cells isolated from normal healthy donors.

Parenterally administered recombinant interleukin 2 protects mice against death due to acute toxoplasmosis (16); it may be that interleukin 2 functions by inducing lymphokine-activated killer cells, a population that is also composed of γδ T lymphocytes.

The inability of γδ T cells to respond in vitro to T. gondii antigen remains to be explained. Other experimental conditions may be required to obtain their proliferation.

These findings suggest that γδ T cells could participate in immune functions during acute T. gondii infection. Further definition of how this subset is engaged will probably add new insights into its role in the immune response.

REFERENCES


