Surface Immunofluorescence Assay for Diagnosis of Lyme Disease

ROBERTO CEVENINI,1* VITTORIO SAMBRI,1 FRANCESCA MASSARIA,1 ROBERTO FRANCHINI,1 ANTONIETTA D’ANTUONO,2 GIUSEPPE BORDA,2 and MASSIMO NEGOSANTI2

Institute of Microbiology1 and Institute of Dermatology,2 Policlinico S. Orsola, University of Bologna, 9 Via Massarenti, 40138, Bologna, Italy

Received 9 March 1992/Accepted 3 June 1992

Lyme disease is a tick-transmitted infection caused by the spirochete Borrelia burgdorferi (9). The diagnosis of Lyme disease is mainly clinical. However, when clinical records are incomplete, serological tests may be required to identify the cause of infection, since Lyme borreliosis shares many symptoms and signs with other established diseases (31). Indirect immunofluorescence assay (IFA) staining of whole Borrelia cells and enzyme-linked immunosorbent assay (ELISA) are used to detect antibodies to B. burgdorferi (28). However, false-positive reactions are well documented in the serodiagnosis of Lyme disease (24), at least in part because of the cross-reactive antigens that are present on the flagella of B. burgdorferi, other Borrelia spp., and Treponema spp (1). A 60-kDa antigen of B. burgdorferi is also believed to be the common antigen which has cross-reactive epitopes with analogous antigens produced by many other bacteria (17). In addition, serological tests for Lyme borreliosis also have been shown to be inadequate in separating Lyme borreliosis from rheumatoid arthritis (21).

To improve the specificity of diagnostic tests for Lyme disease, whole B. burgdorferi cells have been replaced either with fractions of spirochetes in the ELISA (23) or the sera have been previously absorbed with heterologous cross-reactive antigens in the IFA (25). In this study we evaluated the possibility of using immunoglobulin G (IgG) antibodies directed against the surface antigens of living B. burgdorferi cells in a surface immunofluorescence assay (SIFA) for the diagnosis of Lyme disease.

MATERIALS AND METHODS

Study groups. Serum samples were obtained from subjects who were clinically and serologically diagnosed as having Lyme borreliosis (n = 14) or syphilis (n = 55). In addition, 33 serum samples from patients with rheumatoid arthritis were studied.

Lyme disease patients. Nine patients had a history of tick bite and erythema chronicum migrans (ECM), whereas five patients presented with one of the late manifestations of the disease: arthritis (four patients) and neuritis (one patient). A serum sample was obtained from the patients at the time of clinical diagnosis. Serum samples were similarly obtained after 2 to 3 and 6 to 12 months. Two additional serum samples were collected from two patients. All patients gave informed consent for the serial bleedings. All patients received antibiotic therapy. The duration of oral administration of doxycycline or amoxicillin was usually up to 3 weeks for patients with ECM and 1 month for patients with Lyme arthritis. Treatment for neuritis was with ceftriaxone given intravenously for 4 weeks.

Bacterial strains and culture conditions. B. burgdorferi IRS and B. hermsii HS-1 were originally obtained from M. A. Lovett, University of California, Los Angeles. Borreliae were maintained in Barbour-Stoenner-Kelly (BSK-II) medium (2) at 34°C in a standard air incubator and were subcultured every 5 days, as described previously (12).

SIFA. Immunoglobulin binding to Borrelia cell surfaces was assessed by using fluorescein-conjugated rabbit anti-human IgG (Dako, Copenhagen, Denmark). Strain IRS cells that were grown for 3 days in BSK-II medium were collected from the upper part of the culture. One-milliliter amounts of

* Corresponding author.
of the absorbances of sera from 245 subjects who had no known history of Lyme disease.

**Production of mouse polyclonal antibodies.** Mouse immune ascitic fluid containing polyclonal antibodies was obtained by immunizing BALB/c mice with *B. hermsii* HS-1 or *B. burgdorferi* IRS whole cells by a previously described technique (13). Briefly, 0.8-ml volumes of immunogen (0.05 mg of protein) emulsified 1:9 (vol/vol) with complete Freund's adjuvant were injected intraperitoneally into 8- to 12-week-old mice on days 0, 7, 14, and 21. On day 6, 0.5 ml of pristane (2,6,10,14-tetramethylpentadecane; Sigma, St. Louis, Mo.) was injected intraperitoneally. Mice were monitored daily for the appearance of ascites. Ascitic fluid samples were collected on day 30 by peritoneal paracentesis by using a sterile 21-gauge needle.

**SDS-PAGE and Western immunoblotting.** Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed by the method of Laemmli (20) by using a 12.5% acrylamide gel as described previously (11). The Western blot (immunoblot) procedure of Towbin et al. (33) was performed as described previously (11). Briefly, after electrophoretic transfer, the blots were incubated for 12 h at room temperature with human sera or mouse immune ascites diluted 1:100 and 1:1,000, respectively in PBS containing 0.05% (vol/vol) Tween 20. Antigen-antibody complexes were detected with peroxidase-labeled rabbit antiserum against human IgG or mouse immunoglobulins (DAKO, Copenhagen, Denmark) diluted 1:500 in PBS and by using 40 mg of benzidine (Fluka, Buchs, Switzerland) dissolved in 4 ml of acetic acid–96 ml of PBS–100 μl of hydrogen peroxide from a 33% stock solution as the enzyme substrate.

**FTA-ABS.** The fluorescent treponemal antibody absorption test (FTA-ABS) was performed with a commercial kit in accordance with the manufacturer's directions (Behring AG, Marburg/Lahn, Germany). FTA-ABS was done with multwell Treponema pallidum antigen substrate slide. For specific staining by conjugates, controls were the reference diluents of Behring-phosphate buffer alone and sorbent (standardized extract of Treponema phagedenis biotype Reiter) alone, which gave no distinct fluorescence, and the following control specimens (the expected relative fluorescent intensities are given in parentheses): reactive control diluted 1:5 with PBS (4+), reactive control diluted 1:5 with sorbent (3+), a specific positive control diluted with PBS (2+) and with sorbent (−). Test specimens were diluted 1:5 in sorbent before incubation with antigen on the slide.

**RESULTS**

Preliminary observations from our laboratory showed that immune ascitic fluids from mice immunized with whole *B. hermsii* cells were negative when tested by surface immunofluorescence with living *B. burgdorferi* spirochetes, whereas the same samples were highly positive (titers range, 2,048 to 4,096) when tested by conventional IFA, as was expected. Immunoblot analysis (Fig. 1) of immune ascites showed that the cross-reactive antigens in the IFA were the 39-kDa protein of *B. hermsii* (32), the 41-kDa protein of *B. burgdorferi* (3), and a 60-kDa antigen (17) which are known to be not surface exposed (30). These results prompted us to evaluate whether the SIFA performed with living *B. burgdorferi* cells could detect antibody against only species-specific epitopes when tested in sera from patients with Lyme disease and controls were tested. Antibody levels detected by IFA, ELISA, and SIFA in sera from 14 patients with Lyme disease are
FIG. 1. Cross-reactivities of *B. burgdorferi* and *B. henssii* studied by immunoblotting. Immune ascitic fluid obtained by immunizing BALB/c mice with *B. henssii* HS-1 (A) and *B. burgdorferi* IRS (B) were tested with homologous (A, lane 2; B, lane 1) and heterologous (A, lane 1; B, lane 2) antigen preparations. Note that *B. henssii* immune ascites recognized the 41-kDa protein (flagellin) and two other proteins of *B. burgdorferi* with higher molecular masses. None of the known surface-exposed proteins of the Lyme spirochete was recognized. Molecular masses (103) of the internal standard are shown on the right, and the apparent molecular masses of individual *B. burgdorferi* (B, lane 1) and *B. henssii* (A, lane 2) proteins are shown between the two panels.

reported in Table 1. The SIFA (Fig. 2) was negative, with only two exceptions, for sera obtained during the acute phase of the disease (i.e., during the ECM stage) and often for sera obtained during the following 3- to 6-month period; after that, SIFA became positive for sera from all patients with ECM. Sera from patients who entered the study with a diagnosis of Lyme arthritis or neuritis were positive throughout the study period, showing stable high titers.

To evaluate the specificity of the test, sera from 55 patients with secondary or latent syphilis that were reactive in the FTA-ABS (19 serum samples were 4+; 17 serum samples were 3+; 13 serum samples were 2+; 6 serum samples were 1+) as well as in the microhemagglutination test for *T. pallidum* and in the Venerable Disease Research Laboratory assay (data not shown) and 33 serum samples from patients with rheumatoid arthritis were tested for *B. burgdorferi* antibody by IFA, ELISA, and SIFA. All sera were negative by SIFA, whereas various degrees of cross-reactivity were found by IFA and ELISA. Of the 55 serum samples from patients with syphilis, 38 (69%) and 51 (93%) reacted by IFA and ELISA, respectively. Of the 33 serum samples from patients with rheumatoid arthritis, 7 (21%) and 12 (36%) reacted by IFA and ELISA, respectively.

Western blotting analysis showed that sera from patients with Lyme disease became strongly positive by SIFA when antibodies against the 31-kDa protein and, often, the 34-kDa protein were detectable. Antibodies against few other proteins with molecular masses that varied between 14 and 22 kDa were sometimes detectable (Fig. 3). On the contrary, sera from patients with syphilis or rheumatoid arthritis that were reactive with *B. burgdorferi* antigens by IFA or ELISA did not recognize the 31- or 34-kDa proteins (Fig. 3D and E).

**DISCUSSION**

So far, the criteria for the diagnosis of Lyme borreliosis have not been clearly defined and may depend on subjective clinical evaluations and unreliable laboratory tests. This is because Lyme disease tends to mimic several immune disorders and inflammatory diseases. Therefore, there is a demand for improved serological tests for diagnosis of the disease. IFA (28), whole-cell ELISA (7, 14, 28), and immunoblotting (16) have been used as serological tests for the diagnosis of Lyme borreliosis. ELISA has been also performed with *B. burgdorferi* cellular fractions (18, 23), and IFA has been performed with presorption of sera, owing to problems of cross-reactivity, since *B. burgdorferi* shares common antigens with borreliae that cause relapsing fever (22, 24) and with treponemal components (22, 24-27), including flagellin. Aside from flagellin, there are additional pro-

---

**TABLE 1. IgG antibody response to *B. burgdorferi* in 14 patients with Lyme disease determined by IFA, ELISA, and SIFA**

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Disease stage</th>
<th>0-2</th>
<th>3-6</th>
<th>7-12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IFA</td>
<td>ELISA</td>
<td>SIFA</td>
</tr>
<tr>
<td>1</td>
<td>ECM</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>ECM</td>
<td>N</td>
<td>0.7</td>
<td>N</td>
</tr>
<tr>
<td>3</td>
<td>ECM</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>ECM</td>
<td>256</td>
<td>1.2</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>ECM</td>
<td>N</td>
<td>1.3</td>
<td>N</td>
</tr>
<tr>
<td>6</td>
<td>ECM</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>7</td>
<td>ECM</td>
<td>256</td>
<td>1.1</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>ECM</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>9</td>
<td>ECM</td>
<td>N</td>
<td>0.8</td>
<td>N</td>
</tr>
<tr>
<td>10</td>
<td>Arthritis</td>
<td>2,048</td>
<td>1.5</td>
<td>400</td>
</tr>
<tr>
<td>11</td>
<td>Arthritis</td>
<td>1,024</td>
<td>1.5</td>
<td>400</td>
</tr>
<tr>
<td>12</td>
<td>Arthritis</td>
<td>2,048</td>
<td>1.4</td>
<td>400</td>
</tr>
<tr>
<td>13</td>
<td>Arthritis</td>
<td>1,024</td>
<td>1.3</td>
<td>400</td>
</tr>
<tr>
<td>14</td>
<td>Neuritis</td>
<td>4,096</td>
<td>1.5</td>
<td>&gt;400</td>
</tr>
</tbody>
</table>

* Sera were collected from patients at various times after the onset of illness for up to 12 months. A positive IFA result was defined as a titer of ≥256. A positive ELISA result was defined as optical density of ≥0.4 optical density units. A positive SIFA result was defined as a titer of ≥1:50.

* N, negative.
The specificity of the SIFA was also analyzed by using sera from patients with syphilis (14, 22, 24, 26, 27) or rheumatoid arthritis (21), since these sera are known to be highly (syphilis) or moderately (rheumatoid arthritis) cross-reactive in the conventional IFA and ELISA for *B. burgdorferi*. The SIFA was nonreactive with all sera from patients with syphilis and rheumatoid arthritis. In contrast, IFA and ELISA demonstrated high degrees of cross-reactivity with sera from patients with syphilis (69 and 93%, respectively) and rheumatoid arthritis (21 and 36%, respectively), as was expected.

The results of this study show that the surface-exposed antigens of *B. burgdorferi* are highly specific for detection of Lyme disease. In addition, data obtained by using mouse immune ascites also suggested that cross-reactive antigens are not present on the surfaces of *B. burgdorferi* and the spirochete that causes relapsing fever, *B. hermsii*. Since sera from patients with relapsing fever were not available, we could not confirm this observation in human infections. In our study, all serum samples that were positive by SIFA also reacted with the 31-kDa (6) and often with 34-kDa (5) outer surface proteins (proteins A and B, respectively) of *B. burgdorferi* IRS by the immunoblotting technique, suggesting that these proteins are major antigens involved in SIFA. A few other low-molecular-mass proteins (14, 20, and 22 kDa) previously shown to be surface exposed (19, 29) were recognized, which was at variance with the results obtained with SIFA-positive sera.

It is known that surface-exposed immunodominant antigens of OspA and OspB appear to be antigenically variable when they are studied by using monoclonal antibodies (4, 5, 34). However, a recent study by Dorward et al. (15) has shown that, unlike several monoclonal antibodies against the OspA and OspB proteins that fail to bind to some strains, polyclonal antibody directed against intact vesicles of *B. burgdorferi* reacted primarily with OspA and OspB from all strains of *B. burgdorferi*, suggesting that polyclonal IgG antibodies bind to multiple epitopes on recognized proteins. This observation seems to be in agreement with our results, showing that all patients with Lyme borreliosis reacted with *B. burgdorferi* IRS at any time of the disease. The specificity of SIFA is also in agreement with previously presented results, showing that expression of surface proteins A and B is apparently unique to *B. burgdorferi* (4, 6, 8, 15).

In summary, the results indicate that SIFA, because of its specificity, may be useful in the serodiagnosis of complicated Lyme disease and helps to confirm an infection when *B. burgdorferi* cross-reactive antibodies are present in sera from patients with other diseases.
FIG. 3. *B. burgdorferi* Western blot reactivities of five serial serum samples from two patients (B and C) with Lyme disease, presenting with ECM and one serum sample each from patients with syphilis (D) and rheumatoid arthritis (E). Specimens were obtained from patients with Lyme disease early in the course of disease (lane 1) and at 2 (lane 2), 3 (lane 3), 6 (lane 4), and 12 (lane 5) months from the onset of ECM. Note that the OspA protein was clearly recognized by sera from both patients (B and C), whereas OspB was clearly detected only by sera from patient B. Serum from patient C (lanes 4 and 5) also recognized a 39-kDa protein. The serum from a patient with syphilis (D) reacted with flagellin and a few other proteins but not with the Ospa or OspB protein of *B. burgdorferi*. Serum from a patient with rheumatoid arthritis (E) reacted principally with the 41-kDa protein. The reactivity of *B. burgdorferi* IRS immune mouse ascites fluid with homologous antigen (a control) is shown in panel A. The apparent molecular masses of individual *B. burgdorferi* proteins are shown between panels C and D, and the positions of the molecular mass markers (106) are indicated on the right.

ACKNOWLEDGMENT

This work was supported in part by grant 4243/1991 from Regione Emilia Romagna.

REFERENCES


