Fecal Lactoferrin as a Marker of Fecal Leukocytes

We read with interest the report of Guerrant et al. (1). It was stated that the fecal lactoferrin assay may be a useful diagnostic tool in the evaluation of patients with acute diarrhea syndrome (ADS), offering some advantages over microscopic examination for fecal leukocytes. We would like to comment on this and report data from a study carried out in Chile in which fecal lactoferrin was measured as described elsewhere (1) by using anti-human lactoferrin antibody (L-232; Sigma). Titers above 1:60 were considered positive.

In agreement with previous reports (1,2) showing that lactoferrin is present in human milk (1 g/liter), colostrum (7g/liter), and cow milk (0.1 g/liter), we found lactoferrin-positive reactions at dilutions of up to 1:10^5 in milk samples from humans and cows and pasteurized liquid and infant formula (NAN and NIDO; Nestle). The antibody was shown to cross-react with bovine lactoferrin, but only with human milk did it consistently show a more coarse pattern of agglutination.

The fecal lactoferrin assay was evaluated with 63 pediatric patients with ADS and 25 healthy infants. Stool samples were collected for fecal lactoferrin, fecal leukocytes, and microbiological analysis (bacterial and parasitic enteric pathogens and rotavirus). The type of milk received 48 h prior to sample collection was also recorded.

Among the 25 control infants, all were negative for fecal leukocytes, 8 breast-fed infants were positive for fecal lactoferrin (5 of them at titers over 1:540), and 17 infants fed other kinds of milk were negative for fecal lactoferrin. The presence of lactoferrin in the stools appeared to correlate strictly with breast-feeding. Since 10 of 63 patients with ADS had been breast-fed, they were excluded from further analysis. Of 53 patients with ADS, 28 patients were positive for fecal lactoferrin, 15 of them were also positive for fecal leukocytes, and 22 produced samples that had identifiable enteric pathogens (enteropathogenic Escherichia coli [EPEC], 11; rotavirus, 5; Cryptosporidium spp., 3; Campylobacter jejuni, 1; Entamoeba histolytica, 1; and Shigella flexneri, 1). Twenty-five patients with ADS were negative for fecal lactoferrin, 23 of them were negative for fecal leukocytes and only 6 had an identifiable pathogen (EPEC, 2; rotavirus, 3; and Shigella sonnei, 1).

These results suggest that fecal lactoferrin could be a more sensitive test than fecal leukocytes for the evaluation of patients with ADS, but one should keep in mind the possibility of false positives with breast-fed infants, even when high titers of fecal lactoferrin are detected.

REFERENCES

Teresa Quiroga
Patricia García
Manuela Goycoolea
Marcela Potía
Luis Rodríguez
Pablo Vial
UDA Clinical Laboratories and Department of Pediatrics
School of Medicine
Pontificia Universidad Católica de Chile
Santiago, Chile

Author's Reply
We greatly appreciate the thoughtful letter and additional information by Quiroga et al. regarding our report (4). In further support of their findings suggesting that fecal lactoferrin could be a more sensitive test than fecal leukocytes for the evaluation of patients with acute diarrhea are several recent additional reports from at least six different medical centers (1, 2, 6-9). Specifically, Scerpella et al. found that 94% of travelers with invasive pathogens had fecal lactoferrin, while only 69% had fecal leukocytes (7). In a separate report, Yong et al. noted that the fecal lactoferrin assay was more sensitive (75%) than methylene blue microscopy (40%) for the detection of leukocytes in Clostridium difficile toxin-positive fecal specimens (9). Miller et al. noted that, in contrast to healthy volunteers and patients with classical cholera diarrhea, patients with shigellosis or enteropathogenic E. coli, like those with high-titer C. difficile toxin, typically have a moderate if not highly inflammatory process demonstrable by elevated fecal lactoferrin titers (6). Finally, Croft et al., Thornton et al., and Anderson et al. all noted that lactoferrin is 25 to 114% better than methylene blue for detecting invasive pathogens (1, 2, 8).

Furthermore, Thornton et al. noted that 33% of 21 stool specimens positive for lactoferrin but negative by culture had Shigella species detected by PCR (8).

While fecal lactoferrin is highly sensitive for an inflammatory process, however, the presence of fecal lactoferrin is by no means specific. Not only are many processes capable of eliciting an inflammatory enteritis (including idiopathic inflammatory bowel disease), but Quiroga et al. raise the potential problem of cross-reactions of certain anti-lactoferrin antibodies with human milk lactoferrin in the stools of breast-fed infants. Fortunately, while the lactoferrin found in products from other species, such as cow's milk, may show some cross-reaction with certain antibodies such as the L-232 Sigma antibody used by Quiroga et al., this is distinct from the reaction seen with human lactoferrin. Although we certainly share Quiroga's concern about this possible cause of "false-positive" fecal lactoferrin determinations, most diarrheal illnesses occur in children after they are weaned (5), and our own experiences with the anti-human lactoferrin antibody L-3262 from Sigma Company and with the Leuko-test as prepared by TechLab are different from theirs. We did not see agglutination when we tested bovine milk. None of five human breast milk samples we tested gave lactoferrin latex agglutination titers of >1:8; three showed agglutination with the Leuko-test beads only when undiluted and were negative at a 1:2 dilution in buffer. However, still further dilutions showed that these five milk specimens were positive at 1:100 and 1:1,000 dilutions, suggesting a prozone effect consistent with (albeit at lower titers than) observations by Quiroga and colleagues. Derisbourg et al. have reported the significant difference between the glycans of human leukocyte lactoferrin and those of human milk lactoferrin, with the human leukocyte lactoferrin lacking two fucose residues found on human milk lactoferrin (although the authors reported no antigenic differences) (3).

In the course of checking the Leuko-test kit with frozen human breast milk samples in our laboratory, we have also found an unexpected coarse agglutination with the control normal IgG-coated beads when tested with human milk specimens. While this was not seen with the test antibody (which is
clearly positive with lactoferrin controls), coarse agglutination with the control antibody as provided by TechLab might provide a clue that breast milk may be present in the specimen.

In conclusion, our experience and experiences in several other laboratories would certainly concur with that of Quiroga and colleagues; fecal lactoferrin appears to be a more sensitive test than fecal leukocytes in the evaluation of patients with acute diarrhea. However, as with any laboratory test, this should be interpreted in the context of the clinical presentation (which, with fecal lactoferrin, may include the possibility of false positives with breast-fed infants when tested with certain antibodies).

REFERENCES

Richard L. Guerrant, M.D.
Clovis Martins, M.D.
Terezinha Silva, M.D.
Division of Geographic and International Medicine
Charlottesville, Virginia 22908

Use of Selective Media for Isolating Corynebacterium urealyticum from Urine Specimens

Corynebacterium urealyticum, formerly known as Corynebacterium (3) which has been involved mainly in urinary tract infections but also in endocarditis, pneumonia, peritonitis, osteomyelitis, and soft-tissue infections (1, 5, 6). The clinical significance of most organisms isolated from normally sterile sites such as the kidney, the bladder wall, the ureter, and blood is relatively easy to determine. However, that of organisms isolated from nonsterile areas, such as urine or sputum, is more difficult to assess.

Ryan and Murray (4) have recently examined the value of selective media for isolation of C. urealyticum from urine samples as well as determination of the clinical relevance of such isolates. They studied 194 urine samples which had pHs of \(\geq 7.0\), finding two isolates of C. urealyticum (prevalence, 1% in urine samples with such a pH) which were not related to the urinary tract infectin symptoms. This finding partially confirms those of a previously published paper which included more than 9,000 unselected urine samples showing a prevalence of 1.17% with selective media but only 0.038% with nonselective media (7). Unsurprisingly, most or all of the 15 organisms isolated from 13 patients by using selective media were not involved in the clinical symptoms, but those isolated from three patients by using nonselective media were (7). De Briel et al. (2), by studying more than 5,000 unselected urine samples, isolated C. urealyticum in 2.5% (\(\geq 10^7\) CFU/ml) of the urine samples using selective and nonselective culture media (2). Our rates of C. urealyticum isolation from unselected urine samples are 1.9 and 0.23% with selective and nonselective media, respectively. Again, up to 60% of isolates from nonselective medium were clinically significant (5); the rate for those isolates from selective medium was very low (unpublished data). Selective medium for isolating C. urealyticum from urine samples has great epidemiological value, but it is not useful for management of the patients, as most strains isolated only from selective medium have no clinical relevance.

The decision to look for C. urealyticum in urine specimens and therefore to extend the incubation of urine cultures is a matter open for discussion. Nevertheless, we do not recommend the use of selective media for routine purposes. We recommend cystine lactose electrolyte-deficient and blood agars instead. Several circumstances, such as kind of hospital, local prevalence, data from urine sediment, and above all, clinical information communicated to the microbiologist, as also stated by Ryan and Murray (4), should be considered key factors before one decides to search for this pathogen.

REFERENCES

Downloaded from http://jcm.asm.org/ on October 28, 2017 by guest
Measurement of Fecal Lactoferrin as a Marker of Fecal Leukocytes

RICHARD L. GUERRANT,1* VALTER ARAUJO,1 ELIZABETH SOARES,1,2 KAREN KOTLOFF,3 ALDO A. M. LIMA,2 WILLIAM H. COOPER,4 AND AMELIA GAIL LEE1

Division of Geographic Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908; Center for Vaccine Development, University of Maryland, Baltimore, Maryland 21228; and Clinical Research Unit, Federal University of Ceará, Fortaleza, Ceará, Brazil

Received 12 November 1991/Accepted 31 January 1992

While diarrheal illnesses are extremely common in communities and hospitals throughout the world, an etiologic diagnosis may be expensive and cost-ineffective. Although the presence of fecal leukocytes are helpful in the diagnosis and specific therapy of inflammatory diarrhea, this requires prompt microscopic examination of fecal specimens (preferably obtained in a cup rather than a swab or diapaper) by a trained observer. We developed a simple, sensitive test for the detection of leukocytes in fecal specimens using antilactoferrin antibody. Whereas radial immunodiffusion detected 0.02 µg of lactoferrin (LF) per µL or ≥2,000 leukocytes per µL, latex agglutination (LA) readily detected ≥0.001 µg of LF per µL or ≥200 leukocytes per µL added to stool specimens. Despite the destruction or loss of morphologic leukocytes on storage for 1 to 7 days at 4°C or placement of specimens on swabs, measurable LF remained stable. Initial studies of stool specimens from six patients with Salmonella or Clostridium difficile enteritis were positive and those from three controls were negative for LF by LA. Of 17 children in Brazil with inflammatory diarrhea (≥1 leukocyte per high-power field), 16 (94%) had LF titers of >1:50 by LA, whereas only 3 of 12 fecal specimens with <1 leukocyte per high-power field on methylene blue examination and none of 7 normal control specimens had an LF titer of >1:50 by LA. Of 16 fecal specimens from patients with C. difficile diarrhea (cytotoxin titers, ≥1:1,000), 95% (n = 15) had detectable LF by LA (in titers of 1:100 to 1:800). Finally, of 48 fecal specimens from healthy adult U.S. volunteers before and after experimental shigellosis and of 29 fecal specimens from children with documented shigellosis and hospitalized controls in northeastern Brazil, fecal LF titers ranged from 1:200 to ≥1:5,000 in 96% (25 of 26) samples from patients with shigellosis (and reported positive for fecal leukocytes), while 51 controls consistently had fecal LF titers of ≤1:200. We conclude that fecal LF is a useful marker for fecal leukocytes, even when they are morphologically lost on swab specimens or when they are destroyed on transport or storage or by cytotoxic fecal specimens.

Diarrheal illnesses are extremely common throughout the world, causing 2 to 16 or more illnesses per person per year in developed and developing countries (7, 15) and often posing diagnostic and therapeutic questions for physicians. The causes of diarrhea include a wide variety of etiologic agents, many of which have been recognized only in the past two decades (7). However, these agents do not need to be exhaustively sought in every instance of this common problem (6, 23), and the cost of indiscriminate use of etiologic studies for diagnosis is prohibitive. The cost for each positive routine stool culture result has exceeded $900 to $1,000 (8, 11).

An important diagnostic clue in considering whether diarrhea is a noninflammatory or an inflammatory process is the examination for fecal leukocytes (4, 9, 12). If fecal leukocytes are present, they suggest an inflammatory process caused by Salmonella species, Shigella species, Campylobacter jejuni, or Clostridium difficile. Although the majority of cases are noninflammatory (rotaviruses, Norwalk-like viruses, enterotoxigenic Escherichia coli) and often respond to simple oral rehydration therapy, it is important to distinguish the invasive, inflammatory diarrhea illnesses that may be more severe and that should be the focus of more extensive diagnostic studies and cultures and/or antimicrobial therapy (8). However, the methylene blue examination for fecal leukocytes requires that the physician or a skilled microscopist promptly examine under a microscope mucus from a fecal specimen in a cup. The specimen is stained so that leukocytes are clearly distinguishable in the fecal debris. This requires the immediate availability of a skilled person with a microscope to stain and examine fresh fecal specimens in the clinic or emergency areas where the patient is seen. It may also be difficult to obtain fecal specimens in a cup (these specimens are superior to swab or diapaper for examination of fecal leukocytes; swab or diapaper specimens are only 44% sensitive, whereas cup specimens are 95% sensitive for fecal leukocyte detection by methylene blue examination of specimens from patients with culture-documented shigellosis [12]). Therefore, a method that remains sensitive when swabs are used and that remains sensitive when specimens are transported or stored (overnight) would be helpful and might allow a wider application of a selective diagnostic and treatment algorithm.

We developed a simple in vitro test for a leukocyte marker that is highly sensitive to the numbers of fecal leukocytes typically found in inflammatory diarrheal specimens and that can be quickly and easily done either in the clinic or later (after transportation or storage) in the laboratory. Only a minimum amount of training is required to learn how to perform the test. We initially explored the leukocyte marker leukocyte esterase (an enzyme used in detecting leukocytes in the urine) (16) and found that, in contrast to its usefulness in testing leukocytes in urine, normal fecal specimens gave a positive result, so we abandoned further studies with leukocyte esterase. Instead we found that lactoferrin, an iron-binding glycoprotein found concentrated in secondary gran-
ules in leukocytes (10, 19), was not readily detected in normal stool specimens unless neutrophils were added. The neutrophils were then readily detected in fecal specimens when lactoferrin was used as a marker. While we initially demonstrated the feasibility of detecting leukocytes in fecal specimens using a radial immunodiffusion assay for lactoferrin, the greater sensitivity and speed of latex agglutination led to a focus on that method, as noted below.

MATERIALS AND METHODS

Preparation of latex beads. Latex beads (Bacto-Latex 0.81 beads; Difco Laboratories, Detroit, Mich.) were coated with rabbit anti-human lactoferrin (product L-3262; Sigma Chemical Company, St. Louis, Mo.) as follows: 2.5 ml of beads was centrifuged at 1,800 × g for 30 min, washed with 5 ml of glycine buffer (7.3 g of glycine and 10 g of NaCl in 1 liter of distilled water adjusted to pH 8.2 to 8.3), and then resuspended in 5 ml of glycine buffer to provide an approximately 1% suspension of beads. To this latex bead suspension was added 0.35 ml of undiluted rabbit anti-lactoferrin antibody, to provide a 7% antibody dilution in the bead suspension. The mixture was incubated at 38°C for 1 h, after which the antibody-coated beads were spun and resuspended in 5 ml of buffer to which 0.005 g of azide (0.1%) and 0.05 g of bovine serum albumin (1%) were added. The coated bead suspension was then stored at 4°C until use. Twenty microliters of this antibody-coated latex bead suspension was mixed on a microscope slide with 20 μl of sample, and agglutination was graded after 2 min with an unaided eye as follows: 0, no agglutination; ±, barely detectable, trace agglutination with a milky background; 1+, definite, fine agglutination with a milky background; 2+, definite, fine agglutination with a clearing background; 3+, larger agglutination with a clear background.

For a negative control, latex beads were prepared as described above, but rabbit anti-human lactoferrin was not added. The assay has been licensed and is being developed as a commercial product by Techlab Inc., Blacksburg, Va. (a patent is pending).

Isolation of neutrophils. Neutrophils were obtained from normal heparinized (10 ml) venous blood by a one-step Ficoll-Hypaque separation procedure (Neutrophil Isolation Medium; Los Alamos Diagnostics, Los Alamos, N.M.) (3). The polymorphonuclear leukocytes (PMNs) were washed three times with Hanks balanced salt solution (HBSS). Residual erythrocytes were lysed by hypotonic lysis with 3 ml of ice 0.22% sodium chloride solution for 45 s and then with 0.88 ml of 3% sodium chloride solution, this was followed by the addition of 5 ml of HBSS and centrifugation. A 1:2 suspension of PMNs in diluted stool was prepared by using normal stool of mixed with 1 ml of HBSS to make a cloudy suspension and adding 0.5 ml of previously counted PMNs to 0.5 ml of the stool suspension. A 1:2 suspension of PMNs in HBSS was prepared as a control for comparison with fecal suspensions.

To standardize our antibody-coated latex bead preparation, we determined dose-response curves using a solution of lactoferrin (L-0520; Sigma) diluted in HBSS.

Testing of PMNs in fecal specimens after refrigeration or placement on a swab. To test for PMNs in specimens that were refrigerated or placed on swabs, aliquots of previously counted PMN-stool suspensions were refrigerated or placed on swabs for the indicated times. For swab specimens, 130 μl (we found that this volume saturates the swab) of a previously counted PMN-stool suspension was used to saturate a rayon-tipped swab (Culturette II collection and transport system; Marion Scientific, Kansas City, Mo.). The swab was then placed in 390 μl of HBSS and shaken, and the excess fluid was squeezed out to make a calculated 1:4 dilution that we could examine for leukocytes directly and by the lactoferrin assay.

PMNs were quantified morphologically at time zero and at subsequent intervals by using a ruled Neubauer-type hemacytometer chamber. To aid in visualizing the nuclei, methylene blue stain was incorporated into the counting solutions (20 μl of solution, 20 μl of methylene blue, 160 μl of HBSS).

RESULTS

Sensitivity of lactoferrin latex agglutination assay for lactoferrin. As shown in Fig. 1, the lactoferrin latex agglutination assay done with three different antibody-coated bead preparations was sensitive to less than 1 ng of purified lactoferrin per μl, with readily apparent agglutination of the latex beads. The lowest concentration of lactoferrin that consistently gave 1+ or greater agglutination was 0.31 ng/μl, a concentration that, from previously published data (10), would be expected to be present in 60 PMNs per μl or 60 PMNs per mm², a number much lower than that in normal peripheral blood and substantially lower than that expected in an inflammatory fecal specimen.

Sensitivity of lactoferrin latex agglutination assay for PMNs in HBSS or stool suspensions. By using human PMNs that were separated by Ficoll-Hypaque and suspended in HBSS or normal stool suspensions, the sensitivity of the lactoferrin latex agglutination assay that gave detectable trace agglutination was 60 to 140 PMNs per μl, and in stool specimens, 120 to 280 PMNs per μl gave definite 1+ to 2+ agglutination (Fig. 2), with slightly greater sensitivity seen when the PMNs were suspended in stool specimens than when they were suspended in HBSS. The stool specimens, like the detergent Triton X-100 (0.1%), therefore appeared to release lactoferrin. There was no further increase in the sensitivity for PMNs in fecal suspensions when 0.1 or 1% Triton X-100 was used. This number of PMNs was in the range expected from the assay sensitivity for lactoferrin and, again, was substantially below that which would be expected from microscopic examination of inflammatory fecal specimens.

To compare the feasibility of detecting leukocytes by morphologic counts or by latex agglutination for lactoferrin...
after storage in a refrigerator or on swabs, the number of PMNs in the suspensions were counted and then the PMNs were placed in 1% Triton X-100 or in a cloudy suspension of normal stool or both. Then, we reexamine the suspension for PMN counts by microscopy and lactoferrin titer by the latex agglutination assay immediately and after storage in a refrigerator or on swabs for 1 to 6 days (Fig. 3 and 4). In contrast to the lability of PMN numbers and morphologies seen after refrigeration, lactoferrin titers were remarkably stable even when the stool or Triton X-100 suspensions were refrigerated for several days.

There was a striking loss of PMN numbers after PMNs were placed on swab specimens (Fig. 4). In contrast, as quantified by determining the lactoferrin titer of leukocytes in fecal suspensions placed on swab specimens remained stable. Lactoferrin titers were relatively stable after PMNs were placed in a fecal suspension and then placed on rayon-tipped swabs (in comparison with the lactoferrin titers that were determined before placement of the suspension on swabs). In contrast, the number of morphologically evident leukocytes was extremely variable, with a mean loss of 3 to 4 log units after placement on a swab for 1 to 6 days.

**Clinical studies.** Initial pilot studies of stool specimens from six patients with *Salmonella* (*n* = 2) or *C. difficile* (*n* = 4) enteritis were positive and three control stool specimens were negative for lactoferrin by latex agglutination, thus demonstrating the feasibility of using this test to examine patient fecal specimens. In preliminary studies to test whether the lactoferrin latex agglutination method correlated with evidence of fecal leukocytes on microscopy of methylene blue-stained specimens in a field setting, fecal specimens in cups from 29 children with acute diarrhea presenting to a Rehydration Center in Fortaleza, Ceará, Brazil, where stool cultures are not routinely available, were promptly examined. Of 17 children whose specimens had one or more leukocytes per high-power field on microscopic examination, we determined by latex agglutination that 16 (94%) had fecal lactoferrin at a titer of greater than or equal to 1:50. In only 3 of 12 children (25%) whose specimens had less than one leukocyte per high-power field was lactoferrin present at a titer of greater than or equal to 1:50. In addition, none of the seven normal control specimens from healthy individuals without diarrhea in Charlottesville, Va., was positive for lactoferrin at a titer of greater than or equal to 1:50. When we systematically examined by cell culture assay 16 fecal specimens from patients with nosocomial diarrhea at the University of Virginia Hospital that had *C. difficile* cytotoxin titers greater than or equal to 1:1,000, we found by latex agglutination that 95% (15 specimens) had lactoferrin titers that ranged from 1:100 to 1:800, even though PMNs were not seen in 6 of 9 of these specimens that were promptly examined after methylene blue staining. Of 14 fecal specimens with cytotoxin titers of 1:10 to 1:100, 9 (64%) had moderate lactoferrin titers (1:100 to 1:400), while only 1 of 16 specimens (6%) with no detectable cytotoxin had a lactoferrin titer of >1:50 (1:100).

Finally, we tested fecal specimens from patients with culture-documented shigellosis from the University of Maryland Center for Vaccine Development and Hospital das Clínicas in Fortaleza, Ceará, Brazil (Fig. 5). In contrast to 0 of 34 fecal specimens from healthy control adults in the United States that had a titer of >1:50 or 0 of 17 hospitalized children without diarrhea in Fortaleza with fecal lactoferrin titers of >1:200, in 25 of 26 (96%) fecal specimens from adult
and pediatric patients with documented shigellosis with fecal leukocytes on examination by methylene blue staining, fecal lactoferrin titers were ≥1:200 (ranging to ≥1:5,000).

**DISCUSSION**

Results of the studies described here demonstrate the practical feasibility of using latex agglutination for determination of fecal lactoferrin as a simple, semiquantitative marker for PMNs in fecal specimens. Lactoferrin latex agglutination provided a highly sensitive means to quantify PMNs in fecal specimens. It detected lactoferrin at <1 ng/μl and <200 PMNs per μl, a number far less that the expected number of PMNs in inflammatory fecal specimens. Although fecal leukocytes have long been recognized as being of diagnostic value, there is little information on the expected number of PMNs in inflammatory fecal specimens. Reported numbers of leukocytes have ranged from multiple cells on five or more high-power fields (18) to two or more leukocytes per high-power field seen in 86 to 91% of patients with Shigella, C. jejuni, and Salmonella infections (versus 0 to 2% for patients with viral, Giardia, or toxigenic bacterial diarrhea) (1) to >50 leukocytes per high-power field reported in fecal specimens from 39 to 85% of patients with shigellosis (20, 21). Speelman et al. (20) noted that the mean number of leukocytes per cubic millimeter determined by hemacytometer counts was 28,700 ± 4,300 for 33 patients with shigellosis (correlated with a mean of 81.6 ± 6 leukocytes per high-power field). Therefore, one leukocyte per high-power field would equate to approximately 350 leukocytes per mm³. Therefore, our 1:50 dilution would represent a threshold of approximately 8 to 30 leukocytes per high-power field (based on the sensitivity of our test of 60 to 200 leukocytes per μl). Lactoferrin is found in specific (secondary) granules in PMNs and is not found in lymphocytes or monocytes (5, 13, 14). Although lactoferrin is present in several bodily secretions, the amounts range from 4.7 to 26 ng/μl in saliva (22) to 0.218 μg/mg of protein in vaginal mucus (depending on the time from the patient’s last menses) (2) and are substantially lower than the amounts of lactoferrin expected from the number of leukocytes typically seen in patients with recognized inflammatory enteritis. At our 1:50 screening dilution, we may detect as little as 15 ng of lactoferrin per μl, or about 3,000 PMNs per μl. In our pilot field studies in Brazil, this correlated with ≥1 PMN per high-power field. Although Stoll et al. (21) noted that 99% of 304 stool specimens from patients infected with Shigella species, 96% of 262 stool specimens from patients infected with C. jejuni, and 98% of 137 stool specimens from Salmonella species and C. difficile (cytotoxin positive, antibiotic-associated diarrhea), lactoferrin was readily detectable by this method. Field studies showed that for 94% of patients (16 of 17 patients) with fecal specimens with one to five or more fecal PMNs per high-power field on methylene blue staining, lactoferrin latex agglutination titers were >1:50. According to the sensitivity of our assay, this corresponds to 3,000 to 12,000 PMNs per μl, a concentration range that would be expected to correlate with one or more PMNs per high-power field in a blood smear. Furthermore, we found a correlation of C. difficile toxin titers with lactoferrin positivity, despite an apparent lack of morphologically evident PMNs in many of the toxin-containing stools. Finally, in contrast to none of 51 controls (34 healthy U.S. adult volunteers and 17 children hospitalized with diagnoses other than diarrhea in Fortaleza) who had fecal lactoferrin titers of >1:200, 96% (25 of 26) of specimens from patients with acute shigellosis (under experimental or field conditions) and fecal leukocytes reported on initial examination by methylene blue staining had fecal lactoferrin titers of ≥1:200. The one specimen reported on initial examination to have leukocytes but low lactoferrin concentrations was unconfirmed, because examination of all the frozen specimens failed to reveal leukocytes, despite their presence in large numbers in the initial examination of most specimens. A possible explanation for this includes a false-positive reading of the wet mount for fecal leukocytes (false-positive wet mount readings are well documented when fresh fecal specimens are also fixed for subsequent staining and examination by oil-immersion microscopy by additional trained microscopists and for methylene blue staining and lactoferrin studies). Alternatively, frozen fecal specimens may not always preserve lactoferrin or an inhibitor may rarely be present. The controls show that, whereas healthy adults who reside in the United States consistently have fecal lactoferrin titers of ≤1:50, children without diarrhea may have fecal lactoferrin titers of as high as 1:200, perhaps reflecting a subclinical inflammatory response to a common enteric parasite such as Ascaris species, Trichuris species or hookworm (17) or to subclinical malabsorption of milk, salivary, or serum protein. In this setting, the fecal lactoferrin test may help to define mild subclinical inflammatory enteritis, and the threshold for highly significant inflammatory enteritis may thus be interpreted more cautiously, perhaps with a border-
line zone of titers ranging from 1:50 to 1:200 suggesting mild inflammation or protein malabsorption. While breastfed infants are much less likely to develop serious diarrhea, we tested stool specimens from four healthy breastfed infants in Charlottesville, Va., in whom lactoferrin titers ranged from <1:50 to 1:100. Additional studies with larger numbers of culture-documented inflammatory and noninflammatory etiologies of diarrhea are needed. However, the lactoferrin latex agglutination test correlates with evidence of PMNs in fecal specimens determined by methylene blue staining, and lactoferrin remains intact even when the leukocyte morphology is destroyed on transfer or storage or by cytotoxic fecal specimens. Furthermore, it is of considerable practical importance that the lactoferrin assay can detect PMNs in specimens obtained on swabs that adsorb most morphologically detectable PMNs.

In conclusion, fecal lactoferrin can readily be detected by a simple latex agglutination assay and provides a useful marker for inflammatory diarrhea, even when fecal leukocytes are destroyed by transportation, storage, swab, or toxins. The ultimate utility of this assay in clinical or field settings and its potential application to specimens other than stool specimens require prospective clinical studies in different field, hospital, clinical, and laboratory settings.

ACKNOWLEDGMENTS

This work was supported in part by a USAID grant from DiaTech, PATH, Seattle, Wash., and in part by a USAID/CNPQ postdoctoral fellowship for V. Araujo.

We appreciate the technical assistance of Leah Barrett and the help of Yatta Jacob in preparing the manuscript.

REFERENCES