Leish-KIT, a Stable Direct Agglutination Test Based on Freeze-Dried Antigen for Serodiagnosis of Visceral Leishmaniasis

STEFANIE E. O. MEREDITH,† NEL C. M. KROON, EGBERT SONDORP, MARGA G. A. GORIS, COR W. VAN INGEN, HANS OOSTING, GERARD J. SCHOOENE, WIEPPO J. TERPSTRA, and LINDA OSKAM

Department of Biomedical Research, Royal Tropical Institute, Amsterdam, The Netherlands. Phone: (31) 20-5665441. Fax: (31) 20-6971841. Electronic mail address: oskam@amc.uva.nl.

Received 19 December 1994/Returned for modification 14 February 1995/Accepted 11 April 1995

In order to increase the application potential of the direct agglutination test (DAT) for the detection of anti-Leishmania antibodies in human serum samples, we developed an antigen based on stained and freeze-dried Leishmania donovani promastigotes. We describe here the evaluation of the performance of the DAT based on this freeze-dried antigen. It was shown that the freeze-dried antigen remains fully active, even after storage at 56°C for 18 months. With a cutoff value of 1:1,600, the sensitivity of the DAT was shown to be 92% and the specificity of the test was 99.7%, which were comparable with the results found for the DAT based on liquid antigen. The major advantages of the freeze-dried antigen are that the production of a large batch of this antigen allows reproducible results in the DAT over a long period of time and that the freeze-dried antigen can be stored at ambient temperature, which, as was shown, makes the test a valuable diagnostic tool for use in the field.

Visceral leishmaniasis (VL), or kala-azar, is a disease caused by intracellular protozoan parasites of the Leishmania donovani complex. An estimated 200 million people are at risk of contracting the disease, with approximately 100,000 new cases annually (4). If the full-blown disease is not treated, mortality is almost 100%. Therefore, a rapid and accurate method for diagnosis is needed.

The routine diagnosis of VL may be based on one or more of the following methods: (i) the microscopical detection of the parasite in smears of lymph node, bone marrow, or splenic aspiration; (ii) the culturing of the parasite from patient material; or (iii) serological tests for the detection of anti-Leishmania antibodies. A relatively new and very sensitive technique for the detection of Leishmania parasites in blood, bone marrow, lymph node, or spleen material is PCR (19), but the application of this technique in the diagnosis of leishmaniasis is still in its infancy.

Compared with the first two categories mentioned above, serological tests have the advantage that blood sampling is relatively easy, with little inconvenience for the patient, and that many samples may be processed simultaneously. Over the years a number of tests for the detection of anti-Leishmania antibodies, such as the immunofluorescent antibody test (13), the enzyme-linked immunosorbent assay with either whole parasites or purified antigens (5, 13, 15), immunoblot analysis (14, 18), and the direct agglutination test (DAT), have been developed. This last test, making use of an aqueous suspension of stained L. donovani promastigotes (AQ antigen), was developed originally by Allain and Kagan (1) and further modified by Harith et al. (10, 11). The DAT is a fast and simple technique with a high sensitivity and specificity (11). This would make this technique very suitable for use in the field, as was demonstrated by Zijlstra et al. (20, 21), who used the DAT in field studies in the Sudan.

One of the major drawbacks of the DAT is the limited stability of the liquid antigen (11, 17). When no cooling facilities are available, as is often the case in the areas where VL is most frequently encountered, the availability of a stable form of the antigen used in the DAT would facilitate the use of this particular technique.

The aim of our research was to develop a DAT making use of an antigen that would be stable at ambient temperature for a prolonged period of time. We describe here the evaluation of a DAT based on freeze-dried antigen (FD antigen) for the detection of VL.

MATERIALS AND METHODS

Preparation of the antigen. AQ antigen was prepared essentially as described earlier by Harith et al. (11). Briefly, 15% fetal calf serum (Gibco BRL, Grand Island, N.Y.) and penicillin-streptomycin (Gibco BRL) were added to RPMI 1640 containing N-2-hydroxyethylpipperazine-N'-2-ethanesulfonic acid (HEPES) and l-glutamine (Gibco BRL). The resulting medium was inoculated 1:50 with L. donovani MHOM/SD/68/1S (10) promastigote culture grown from a cryopreserved stock and was incubated at 28°C. After harvesting, the promastigotes were washed with Locke solution (0.9% NaCl, 0.25% glucose, 0.04% KCl, 0.02% CaCl₂, 0.02% NaN₃), and treated with 0.4% trypsin in Locke solution at 37°C for 30 min, after which the promastigotes were fixed by treatment with 1% (wt/vol) formaldehyde in Locke solution for 20 h at 4°C. Following washing in cold saline (0.9% NaCl) with 1% (wt/vol) sodium citrate, the fixed promastigotes were stained for 90 min with the saline-citrate solution containing 0.02% Coomassie brilliant blue. Subsequently, the stained promastigotes were washed with the saline-citrate solution. Part of the antigen was put into freeze-drying solution, and 5-ml aliquots were freeze-dried and sealed under vacuum. This FD antigen forms the basis of a serodiagnostic kit for the detection of anti-Leishmania antibodies, designated Leish-KIT, which will soon be commercially available (Lypharma, Bilthoven, The Netherlands). The remainder of the AQ antigen was stored at 4°C until further use.

Performance of the DAT. The DAT was performed essentially as described by Harith et al. (11). Briefly, serum samples were diluted in a dilution solution containing 0.9% (wt/vol) NaCl, 0.2% (wt/vol) gelatin (Difco Laboratories, Detroit, Mich.), and 0.78% (vol/vol) β-mercaptoethanol. To discriminate between agglutination and nonagglutination, the use of V-shaped microwell plates
tical analysis revealed that titers were on the average 0.7 dilution step lower for the FD antigen than for the AQ antigen \((P < 0.001)\).

Sensitivity and specificity of the DAT using FD antigen. We determined the titers of a total of 485 serum samples from the different groups of subjects described in Materials and Methods in the DAT using FD antigen. Results are shown in Fig. 2. With the FD antigen, 4 of 50 serum samples from VL patients gave titers that were \(\geq 1:800\), 2 gave a titer that was \(1:1,600\), and 44 gave titers of \(\geq 1:3,200\). With a cutoff value of \(1:1,600\) in the DAT with FD antigen, 46 of 50 serum samples from proven VL patients would be classified as positive, representing a sensitivity of 92%. One serum sample from a patient with Crohn's disease gave a titer of \(1:1,600\), and 1 serum sample from a patient with Chagas' disease (American trypanosomiasis) gave a titer of \(1:800\); all other 433 serum samples gave titers of \(\leq 1:400\). With a cutoff value of \(1:1,600\), the specificity of the DAT using FD antigen was 99.7% (434 of 435 negative).

Performance of the DAT using FD and AQ antigens in a field setting. Twenty-four serum samples from VL patients were tested in the field with both AQ and FD antigens of the same batch. Results are shown in Fig. 3. Statistical analysis of the results revealed that there was no significant difference \((P = 0.21)\) in the titers obtained with the AQ and FD antigens. Further analysis showed that the titers obtained with the FD antigen are the same in the field and in the laboratory (results not shown).

Reproducibility of the DAT. Three aliquots of FD antigen from the same batch, which had been stored at ambient temperature, were tested in the DAT on three consecutive days with 20 serum samples from VL patients. Statistical analysis showed no systematic day-to-day variation in the test.

DISCUSSION

Testing the stability of the AQ antigen, we found that it remained stable at 20°C for less than 4 weeks and at 37°C for less than 3 weeks: this is in agreement with previous findings.
In contrast, the FD antigen remained fully stable in the DAT even after storage for 18 months at 56°C. These results indicated that the use of FD antigen in the DAT is feasible.

Our next line of investigation concerned the comparison of the performance of the FD and AQ antigens in the DAT. We compared DAT titers of serum samples from parasitologically proven VL patients; the results, presented in Fig. 1, clearly indicate that in the laboratory situation the FD antigen generally gave a titer that was almost one dilution step lower than the titer obtained with AQ antigen. However, for the interpretation of test results this is no problem when the cutoff value is changed accordingly. Previously, the cutoff value for the DAT based on AQ antigen was set at 1:3,200 (10). In order to test whether the cutoff value for the FD antigen could be set at 1:1,600, we tested 435 serum samples from different groups of subjects who did not suffer from VL. The results, presented in Fig. 2, clearly indicated that only two samples gave a titer of ≥1:800 and only one sample would be false positive with 1:1,600 used as the cutoff value. Moreover, titers with these serum samples were also generally almost one dilution step lower with the FD antigen than with the AQ antigen (results not shown).

With a cutoff value of 1:1,600 in the DAT with FD antigen, the sensitivity of the test is 92%. For the AQ antigen, with a cutoff value of 1:3,200, the sensitivity of the DAT with our set of serum samples would be 88%. The sensitivity of the DAT with AQ antigen was previously reported to be 100% (10, 11) and 94% (20). Thus, the sensitivity that we observed was lower than that described in literature. Four patients were false negative. We could not determine whether these patients would seroconvert, as collection of a second serum sample was not possible. Field experience in the epidemic situation in the Sudan taught us that in the marginally nourished population present in this area, titers of 1:200, 1:400, and 1:800 should be considered suspect (our unpublished observations).

With a cutoff value of 1:1,600, the specificity of the DAT using FD antigen was 99.7%. No cross-reactivity was observed with serum samples from patients suffering from malaria, schistosomiasis, Chagas’ disease, and leprosy, diseases with clinical features that may be confused with either VL or post-kala-azar dermal leishmaniasis (6, 15, 18).
Trypanosomes are closely related to Leishmania organisms. It was reported previously that serum samples from Chagas' disease patients showed no cross-reactivity in the DAT (3), whereas approximately 30% of the serum samples from African trypanosomiasis patients cross-reacted in the DAT (9, 10). This problem was overcome by the addition of β-mercapto-ethanol to the dilution solution (11). Using this dilution solution, we observed no cross-reactivity in the DAT using either FD or AQ antigen with serum samples from both African trypanosomiasis patients and Chagas’ disease patients (Fig. 2).

These observations led us to investigate the performance of the DAT with FD antigen in a field setting lacking any technical sophistication. Under these circumstances, in contrast to the results obtained in the laboratory, no statistically significant difference was observed in titers between DATs using FD or AQ antigen (Fig. 3). This discrepancy may be explained by the deterioration of the AQ antigen due to the suboptimal cooling facilities present in the field.

In all our observations described above, we employed the generally accepted criterion that wells showing either a blue mat, an enlarged blue dot with a frayed edge, or an enlarged blue dot are all designated positive in the determination of the titer. The decision to consider a blue dot enlarged is subjective. Therefore, we also tried an alternative criterion in which the first two categories are still designated positive but wells containing enlarged blue dots are now designated negative. With this criterion, titers from all groups (VL patients, negative controls, and people with diseases other than VL) were read two steps lower than with the standard criterion. Thus, with the alternative criterion one can use a cutoff value which is two steps lower (i.e., 1:400) with the same sensitivity (92%) and specificity (99.7%) (our unpublished observations). The use of this alternative criterion does not change test interpretation but may facilitate test reading.

As indicated earlier, the DAT is not capable of distinguishing between past kala-azar, subclinical infection, and current disease (20). It is reported that increased levels of anti-Leishmania antibodies may be present for a long time after completion of treatment (8, 12). On the other hand, if VL is associated with human immunodeficiency virus infection or other sources of immunocompromise, a considerable number of patients lack detectable levels of antibodies (7). Therefore, as with all serodiagnostic tests, the significance of positive or negative results in the DAT should always be judged against clinical data and the results of other diagnostic methods.

We conclude that the DAT using heat-stable FD antigen is a highly specific and adequately sensitive addition to the diagnostic armament for VL but that the main gain lies in its reproducibility combined with a long shelf life even under harsh conditions.

ACKNOWLEDGMENTS

Serum samples used in this study were kindly provided by the following people and institutions: P. Kager, E. Zijlstra, T. van Gool, and P. Das (AMC, Amsterdam, The Netherlands); P. Andrade (Universidade Federal de Pernambuco, Recife, Brazil); T. Kortbeek (RIVM, Bilthoven, The Netherlands); J. P. Verhave (Catholic University, Nijmegen, The Netherlands); and the Central Serum Bank for Sleeping Sickness (project financed by the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases). We thank C. Jaffe (Hebrew University, Jerusalem, Israel) for personal communication of results.

Investigations carried out in southern Sudan received financial support from the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases.

REFERENCES

12. Jaffe, C. Personal communication.