Detection of Extended-Spectrum β-Lactamase (ESBL)-Producing Strains by the Etest ESBL Screen

MARTIN G. CORMICAN,* STEVEN A. MARSHALL, AND RONALD N. JONES

Medical Microbiology Division, Department of Pathology, University of Iowa College of Medicine, Iowa City, Iowa

Received 29 January 1996/Returned for modification 22 February 1996/Accepted 9 May 1996

Resistance to contemporary broad-spectrum β-lactams, mediated by extended-spectrum β-lactamase (ESBL) enzymes, is an increasing problem worldwide. The Etest (AB Biodisk, Solna, Sweden) ESBL screen uses stable gradient technology to evaluate the MIC of ceftazidime alone compared with the MIC of ceftazidime with clavulanic acid (2 μg/ml) to facilitate the recognition of strains expressing inhibitable enzymes. In the present study, ESBL-producing strains (17 Escherichia coli transconjugants) were studied to define “sensitive” interpretive criteria for the Etest ESBL screen. These criteria (reduction of the ceftazidime MIC by >2 log₂, dilution steps in the presence of clavulanic acid) defined a group of 92 probable ESBL-positive organisms among the 225 tested strains of Klebsiella species and E. coli having suspicious antibiogram phenotypes. With a subset of 82 clinical strains, the Etest ESBL screen was more sensitive (100%) than the disk approximation test (87%) and was more convenient. The MICs of ciprofloxacin, gentamicin, and tobramycin at which 50% of isolates are inhibited were 16- to 128-fold higher (co-resistance) for the ESBL-screen-positive group of strains than for the ESBL-screen-negative group of strains. Some strains for which cephalosporin MICs were elevated and which were Etest ESBL screen negative were also cefoxitin resistant, i.e., consistent with a chromosomally mediated AmpC resistance phenotype. The Etest ESBL screen test with the ceftazidime substrate appears to be a useful method for detecting or validating the presence of enteric bacilli potentially producing this type of β-lactamase.

Many of the emerging antimicrobial resistance problems of this decade have been characterized by difficulty in the recognition of resistance in the laboratory, particularly by rapid susceptibility test methods. The plasmid-encoded extended-spectrum β-lactamases (ESBL) enzymes represent such a resistance phenomenon that is difficult to recognize (8, 9, 13, 17, 22, 23, 27, 30).

Plasmid-borne β-lactamases capable of hydrolyzing penicillins provide the most common mechanism of resistance to β-lactam antimicrobial agents among gram-negative bacteria (26), and their existence was the principal stimulus to the development of the compounds that inhibit β-lactamases, e.g., clavulanic acid, sulbactam, and tazobactam. These previously characterized enzymes of the TEM (TEM-1 and -2) and SHV (SHV-1) categories (Bush group 2b) were not capable of conveying resistance to the newer extended-spectrum cephalosporins (3). In the mid-1980s, plasmid-borne β-lactamases conferring resistance to the extended-spectrum cephalosporins were first recognized (5, 21–23). This event has been particularly associated with resistances among Klebsiella species and Escherichia coli strains, but other species of the family Enterobacteriaceae also express ESBL activity (4, 6, 15, 18, 22, 23). It has become apparent that changes in the substrate affinity of the enzyme were related to relatively minor changes in the sequences of the genes encoding the TEM-1, TEM-2, and SHV-1 enzymes (5, 22). These novel enzymes are defined as group 2be (hydrolysis of ceftazidime, cefotaxime, or aztreonam at rates >10% of the rate for benzylpenicillin and subject to inhibition by β-lactamase inhibitors) in the classification of Bush et al. (3). A more recent phenomenon has been the evolution of TEM- and SHV-derived β-lactamases with reduced affinities for β-lactamase inhibitors (Bush group 2br; “inhibitor-resistant TEMs”) (3, 5, 22).

Detection of ESBL expression has proved to be difficult for many laboratories, because in vitro testing may not reveal intermediate susceptibility or resistance to cefotaxime or ceftaxizone (widely used and tested) at the National Committee for Clinical Laboratory Standards interpretive breakpoint for susceptibility (13, 27, 30). The optimal substrate for the members of this enzyme group varies markedly. Ceftazidime is recognized as a good substrate for the group, although other cephalosporins including cepodoxime and cefuroxime may be used (2, 8, 13). Even with the commonly tested compounds ceftazidime or cefuroxime, in vitro testing may result in a susceptible (MIC, ≤8 μg/ml) or intermediate (MIC, 16 μg/ml) categorization rather than a frankly resistant result (MIC, ≥32 μg/ml) (13, 27, 30). Because these cephalosporins are also substrates for hydrolysis by chromosomally and chromosomally derived β-lactamases (Bush group 1, AmpC, etc.) (3, 11, 24), demonstration of substrate inhibition of hydrolysis by a β-lactamase inhibitor remains necessary to establish that the organism is a producer of a Bush group 2be enzyme (3).

One approach to the detection of ESBLs is to perform disk approximation testing with strains of E. coli or Klebsiella spp. for which the MICs of cefuroxime, ceftazidime, or related compounds are outside of the susceptible range (intermediate or resistant by National Committee for Clinical Laboratory Standards criteria). Disk approximation testing functions via the placement of cefuroxime and ceftazidime disks close (20 or 30 mm) to an amoxicillin-clavulanate disk on a plate inoculated with the test organism. Enhancement of the zone of inhibition or a so-called ghost zone between either of the cephalosporin disks and the clavulanate-containing disk (amoxicillin-clavulanate acid) indicates the presence of a Bush group 2be enzyme (10, 17, 27, 30). Precise placement of the disks, correct storage of the clavulanate-containing disks, and performance of appropriate control tests are critical to the sensitivity of the disk
of a fixed concentration (2 μg/ml) of clavulanic acid. The Etest strip is a plastic drug-impregnated strip, one side of which generates a gradient of β-lactams and other antimicrobial agents against these two enteric bacilli and to compare the activities of a series of extended-spectrum cephalosporins (cefotaxime, ceftriaxone, ceftizoxime, and ceftazidime) or aztreonam were elevated (>2 μg/ml) or which demonstrated resistance to a fluoroquinolone (ciprofloxacin or ofloxacin) or an aminoglycoside. Susceptibility patterns to β-lactamase inhibitor combinations, cephamycin, and carbapenems were not used as defining criteria for testing.

A subset (82 organisms) of the 225 strains listed above was tested by the disk approximation method (10), and the results obtained by that method were compared with the Etest ESBL screen results. Strains for which the results between the methods were discordant were tested again, and only the reproducible data were tabulated.

Antimicrobial agents. Cefazidime, cefazidime-clavulanate, cefuroxime, ceftaxim, imipenem, amoxicillin-clavulanate, ciprofloxacin, gentamicin, and tobramycin Etest strips and the Etest ESBL screen were obtained from AB Biodisk.

Susceptibility tests. Susceptibility testing was performed by Mueller-Hinton agar by the Etest methodology in accordance with the manufacturer’s instructions. Briefly, after overnight growth on brain heart infusion agar, the organisms were suspended in saline to a turbidity equal to that of a 0.5 McFarland turbidity standard. The suspension was used to inoculate Mueller-Hinton agar plates by swabbing them with a cotton swab. After drying for 15 min, the Etest strips were placed on the plates and the plates were incubated for 18 h in air at 35°C. The MIC was interpreted as the point of intersection of the inhibition ellipse with the Etest strip edge. Agar dilution MICs were determined by the NCCLS methodology of the National Committee for Clinical Laboratory Standards (19) for ceftazidime alone and for ceftazidime with clavulanate (2 μg/ml) for a subset of 35 isolates. These isolates were those strains for which the ceftazidime MICs were reduced 1 to 4 dilution steps with the Etest ESBL strip (16 strains) and strains randomly selected from among those strains for which no reduction in the ceftazidime MICs were shown (8 strains) and those for which the MICs were reduced by >4 dilution steps (11 strains).

Data analysis. For isolates for which ceftazidime MICs were >32 μg/ml, the MIC was taken as 64 μg/ml and the reduction in the ceftazidime MIC was calculated from that value. Results off scale (either high or low) by the two methods were regarded as being in agreement.

RESULTS

The ceftazidime MICs for the 17 E. coli transconjugants expressing a β-lactamase enzyme resistance plasmid are presented in Table 1, together with the reductions in the ceftazidime MICs in the presence of 2 μg of clavulanic acid per ml. For the TEM-1, TEM-2, TEM-4, SHV-1, and SHV-2 transcon-
jugants, the Etest ESBL screen test was performed on four occasions. For TEM-1 and TEM-2 transconjugants the reduction in the ceftazidime MIC due to clavulanic acid was routinely nil. For SHV-1 transconjugants the reduction was consistently 1.5 to 2 log2 dilution steps. For TEM-4 and SHV-2 transconjugants the reduction in the ceftazidime MIC was consistently greater than 5 log2 dilution steps. For ESBL transconjugants a >5 log2 dilution lower ceftazidime MIC was found when ceftazidime was combined with 2 μg of clavulanic acid per ml, and for all non-ESBL strains a ≥2 log2 dilution change was found.

For the 225 clinical strains studied, the frequency distributions of the reductions in the ceftazidime MICs are presented in Fig. 1. For the five strains for which the ceftazidime MIC was reduced 2.5 to 3 log2 dilution steps, the Etest ESBL screen was repeated in triplicate. In four cases the reduction in the MIC resolved to a higher value (3 to 3.5 log2, dilution steps), and in one case it resolved to a lower value (2 log2, dilution steps). If a reduction of >2 log2 dilution steps was taken as the breakpoint criterion for recognition of a Bush group 2β enzyme-producing strain, then the result for one of these five strains could be regarded as an initial false-positive result.

The Etest ESBL screen results compared with the results of a disk approximation test with a subset of 82 clinical isolates are summarized in Table 2. The Etest ESBL screen was more sensitive than the disk approximation method (in which the disks were 25 mm apart). The ceftazidime MICs determined with the Etest ESBL strip are compared in Table 3 with those determined with the routine ceftazidime Etest strip (15 log2 dilution steps), and no significant differences were observed. The agreement between ceftazidime MICs, ceftazidime MICs with clavulanate (2 μg/ml), and the degree of reduction of the ceftazidime MIC in the presence of clavulanate determined with the Etest ESBL strip and by the reference agar dilution method are summarized in Table 4. The MICs at which 50% and 90% of strains tested are inhibited (MIC50s and MIC90s, respectively) were compared by using Etest products for the ESBL screen-positive population (92 strains) and the ESBL screen-negative population (133 strains). The MICs and MIC50s of a variety of β-lactams, ciprofloxacin, gentamicin, and tobramycin are presented in Table 5. A tendency toward increased resistance to aminoglycosides and fluoroquinolones for ESBL-producing strains of the family Enterobacteriaceae was reflected in the higher MIC50s for those strains compared with those for the ESBL screen-negative organisms.

Of the 92 Etest ESBL screen-positive clinical strains, ceftazidime MICs were in the range 4 to 8 μg/ml for 11 (12%) strains and were in the range of 12 to 24 μg/ml for 8 (9.1%) strains. Therefore, 12 and 9% of ESBL screen-positive strains were considered susceptible and intermediate to ceftazidime, respectively (19). A total of 89 clinical isolates resistant to ceftazidime (MIC, ≥32 μg/ml) were identified, of which 16 were negative for ESBL enzyme expression. All of these isolates were also resistant to cefoxitin (MICs, >256 μg/ml for

![FIG. 1. Reduction (log2) of ceftazidime MICs in the presence of clavulanate (2 μg/ml) for 225 clinical isolates of E. coli and Klebsiella species.](http://jcm.asm.org/)
DISCUSSION

The emergence of plasmid-encoded ESBLs is a significant evolution in antimicrobial resistance. Outbreaks due to the dissemination of ESBL-producing bacterial strains and to the dissemination of ESBL-encoding plasmids among different species of the family Enterobacteriaceae have been described in hospitals and other health care facilities (16, 18, 20, 23, 25). The spread of ESBL-producing clones between hospitals has also been reported (1, 27). Precise data on the prevalence of ESBL-producing strains in the United States are not available. This is related at least in part to difficulty in recognizing these strains by clinical microbiology laboratories. It is clear, however, that ESBL-producing strains are present in many hospitals throughout the United States (27), and greater than 7% of Klebsiella species are intermediate or resistant to ceftazidime, suggesting that ESBL-mediated resistance is not rare (12). It is likely, from previous experience with the TEM-1 and TEM-2 enzymes, that this resistance mechanism will become a major problem in the future. Knowledge of the extent of ESBL-mediated resistance appears limited by the inability of many commercially available systems or standardized methods of susceptibility testing to detect this resistance (13, 27, 30). Supplemental disk approximation testing has proved to be a useful detection method; however, suboptimal placement of the disks leaves the method with limited sensitivity but acceptable specificity (17, 30).

Ceftazidime is an excellent substrate for most ESBL enzymes that have been described (2, 13), and Bush group 2be enzymes can be differentiated from other β-lactamase enzymes (e.g., chromosomal or chromosomally derived AmpC enzymes) by the reduction in the ceftazidime MIC in the presence of some clinically useful β-lactamase inhibitors such as clavulanic acid (10, 13, 17). Two commercially available products (Vitek and Etest) which have been developed for the detection of ESBLs rely on this alteration in susceptibility to one cephalosporin substrate. One method uses an automated growth-monitoring system (Vitek) (28), and the other (Etest) applies the stable gradient technology to an agar diffusion test. Our results and those of Sanders et al. (28) suggest that both methods are more sensitive than the disk approximation test for the detection of Bush group 2be resistance.

Our data derived from the studies with E. coli transconjugants demonstrate a clear separation between strains expressing the conventional plasmid-borne group 2b β-lactamasases (TEM-1, TEM-2, and SHV-1), for which the reduction in the ceftazidime MIC was ≥2 log2 dilution steps, and the Bush group 2be-expressing strains, for which the reduction in the ceftazidime MIC was generally ≥5.5 to 7 log2 dilution steps.

This feature of ESBL-producing organisms was previously been described as a marker for ESBL-producing strains (23). This feature of ESBL-producing organisms was confirmed with our series of clinical isolates, in which the MIC50s of ciprofloxacin, gentamicin, and tobramycin were confirmed with our series of clinical isolates, in which the MIC50s of ciprofloxacin, gentamicin, and tobramycin were confirmed with our series of clinical isolates, in which the MIC50s of ciprofloxacin, gentamicin, and tobramycin were confirmed with our series of clinical isolates, in which the MIC50s of ciprofloxacin, gentamicin, and tobramycin were confirmed with our series of clinical isolates, in which the...
TABLE 5. Antimicrobial activities (MIC₉₀ and MIC₅₀) of cefoxime, cefotaxin, amoxicillin-clavulananate, imipenem, ciprofloxacin, gentamicin, and tobramycin for ESBL-producing and ESBL-nonproducing clinical strains of the family Enterobacteriaceae

<table>
<thead>
<tr>
<th>Enzyme group (no. of isolates)</th>
<th>Cefoxime</th>
<th>Cefotaxin</th>
<th>Amoxicillin-clavulanate</th>
<th>Imipenem</th>
<th>Ciprofloxacin</th>
<th>Gentamicin</th>
<th>Tobramycin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC₉₀ (µg/ml)</td>
<td>MIC₅₀ (µg/ml)</td>
<td>MIC₉₀ (µg/ml)</td>
<td>MIC₅₀ (µg/ml)</td>
<td>MIC₉₀ (µg/ml)</td>
<td>MIC₅₀ (µg/ml)</td>
<td>MIC₉₀ (µg/ml)</td>
</tr>
<tr>
<td>ESBL (92)</td>
<td>32</td>
<td>>256</td>
<td>6</td>
<td>32</td>
<td>8²</td>
<td>16³</td>
<td>0.25</td>
</tr>
<tr>
<td>Not ESBL (133)</td>
<td>12</td>
<td>>256</td>
<td>6</td>
<td>>256</td>
<td>12⁸</td>
<td>4⁶</td>
<td>0.25</td>
</tr>
</tbody>
</table>

* On the basis of the results for 56 randomly selected isolates.
* On the basis of the results for 57 randomly selected isolates.

with potentially serious clinical implications for β-lactam chemotherapy and for the epidemiology of nosocomial infections (16, 18, 20, 23, 25). It is likely that the true extent of this problem is underrecognized. Among the reasons for this poor detection has been the lack of a convenient and sensitive method for recognizing these strains (13, 27, 30). Both the detection has been the lack of a convenient and sensitive method for recognizing these strains (13, 27, 30). It is likely that the true extent of this problem is underrecognized. Among the reasons for this poor recognition and more careful monitoring of this emerging resistance problem is important. A functional classification of Enterobacteriaceae (E. coli and Klebsiella spp.). Furthermore, it is likely that these tests will also prove to be useful for selecting strains for more detailed molecular analysis.

ACKNOWLEDGMENTS

We gratefully acknowledge the assistance of Kay Meyer in the preparation of the manuscript and M. Erwin for technical support.

REFERENCES

2. Bradford, P. A., and C. C. Sanders. 1993. Detection of extended-spectrum β-lactamases in clinical isolates of Enterobacteriaceae (E. coli and Klebsiella spp.). Furthermore, it is likely that these tests will also prove to be useful for selecting strains for more detailed molecular analysis.

Microbiol. 32:175–179.