Diagnosis of Toxoplasmosis by Joint Detection of Immunoglobulin A and Immunoglobulin M

MIRIAM ARCAVI,* GLADYS ORFUS, AND GLORIA GRIEMBERG

Inmunología Clínica, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina

Received 8 January 1997/Returned for modification 28 January 1997/Accepted 25 February 1997

An indirect immunofluorescence test with total anti-human immunoglobulin conjugate (IgG,A,M-IIF) can be used for joint detection of immunoglobulin A (IgA) and IgM antibodies, provided serum IgG is previously absorbed with anti-human IgG. To determine the validity of the IgG,A,M-IIF assay with absorbed sera, the results obtained were compared with those obtained by methods routinely used for the detection of acute-phase markers, IgA and IgM IIF and enzyme immunoassay. Accordingly, 114 serum samples were selected from patients showing titers of $\geq 1:024$ by IgG,A,M-IIF. (i) In 90 of the samples, neither IgA nor IgM was detected by any of the methods employed; (ii) the remaining 24 samples showed IgA and/or IgM. In all cases, the IgG,A,M-IIF assay with absorbed sera was positive. These comparative data support the use of IgG,A,M-IIF, performed with absorbed and unabsorbed sera simultaneously, for determining the presence of specific IgG, IgA, and IgM by employing a single technique (IIF), one conjugate (anti-IgG,A,M), and only one sample (with and without previous absorption), thus providing a useful initial tool for the diagnosis of toxoplasmosis.

Infection by Toxoplasma gondii is distributed worldwide, benign, and generally asymptomatic in an immunocompetent individual and confers immunity for life (2, 4, 30, 45). However, it can produce serious disorders in an immunosuppressed subindividual and confers immunity for life (2, 4, 30, 45). For this reason, the search for antibodies against primary infection during pregnancy (8, 13, 16, 17, 22, 24, 26, 34, 39, 41). For this reason, the search for antibodies against primary infection during pregnancy is essential.

The aim of this work was to demonstrate the validity of using as an initial step an indirect immunofluorescence test (IIF) with absorbed IgG and unabsorbed sera instead of carrying out three determinations for detecting IgG, IgA, and IgM antibodies by routine techniques (IIF and enzyme immunoassay [EIA]) (3, 5, 12, 32, 44, 46). The usefulness of implementing this follow-up with pregnant women and a diagnosis of acute infection poses a challenge for an obstetrician.

Therapeutic success is obviously greater when treatment is provided without delay (1, 2, 25, 36), so early detection of infection during pregnancy is essential.

Several reports have indicated the role that specific immunoglobulin A (IgA) plays in the acute-infection process (6, 7, 11, 29, 31) due to the presence of antinuclear antibodies and/or rheumatoid factor, which react with specific human IgG to produce immunocomplexes which bind to the antigen (23), may occur. Therefore, to detect acute-infection markers by IIF (either in an individual step or as a whole), it is necessary to eliminate total serum IgG (43). For this reason, all the sera used to detect acute-infection markers were previously absorbed at a 1:10 ratio with anti-human IgG sera (The Binding Site, Birmingham, London). The suspension was gently mixed several times and after 30 min at room temperature was centrifuged to eliminate precipitated immunocomplexes.

Control of serum IgG removal. When IgM or IgA IIF is carried out, false-negative results due to the presence of high levels of specific IgG (10) and false-positive results (11, 29, 31) due to the presence of antinuclear antibodies and/or rheumatoid factor, which react with specific human IgG to produce immunocomplexes which bind to the antigen (23), may occur. Therefore, to detect acute-infection markers by IIF (either in an individual step or as a whole), it is necessary to eliminate total serum IgG (43). For this reason, all the sera used to detect acute-infection markers were previously absorbed at a 1:10 ratio with anti-human IgG sera (The Binding Site, Birmingham, London). The suspension was gently mixed several times and after 30 min at room temperature was centrifuged to eliminate precipitated immunocomplexes.

Antigen for IIF. The antigen for IIF testing (BioMérieux, Marcy-l’Etoile, France) was a lyophilized suspension of formalin-treated toxoplasma organisms obtained from mouse ascitic fluid. It was diluted in phosphate-buffered saline (PBS) (pH 7.2), and 10 μl was applied in each slide circle to obtain 40 microorganisms in each field with a 40\times objective. Slides were allowed to sediment for 15 min, dried in an incubator at 37°C, and stored at -70°C until used.

EIA. EIA was performed by double-sandwich IgM EIA (DS-EIA-IgM) (Ab-bott, North Chicago, Ill.) and reverse IgA EIA (R-EIA-IgA) (Sorin-Biomedica, Vercelli, Italy).

IIF. Semiquantitative IgG,A,M-IIF assays were performed with unabsorbed sera. The conjugate used was FITC-labeled goat anti-total human immunoglobulin serum (Pasteur). This technique was used (i) to determine the percentage of the population that was infected and (ii) to select patients presenting toxoplasmosis titers of $\geq 1:024$ in order to investigate the presence of acute-infection markers. The starting serum dilution was 1:16, and successive 1:4 dilutions were made. Qualitative IgG,A,M-IIF assays with absorbed sera (IgA and IgM) were performed with serum samples presenting titers of $\geq 1:024$. The conditions of this reaction were identical to those employed with unabsorbed sera. The same anti-total human immunoglobulin conjugate was used, but sera were previously absorbed at a 1:10 ratio with anti-human IgG. When positive results were obtained, successive 1:4 dilutions with PBS were made.

The presence of IgA and IgM antibodies was investigated by IIF. In both cases, the conjugate used was FITC-labeled goat anti-α- and anti-μ-chain serum (Kallestad, Chasca, Minn.) and the conjugate used was FITC-labeled goat anti-α- and anti-μ-chain serum (Kallestad, Chasca, Minn.).
were studied by IgG-IIF and RIDLL-IgG, with negative results measured by conventional IIF and/or EIA.

Sera obtained from 10 healthy individuals were pooled to serve as a negative control. Human sera. A total of 114 samples with IgG,A,M-IIF titers of 1:1,024 were selected; 15 were from men, and 99 were from pregnant women.

RESULTS

Detection of toxoplasmic infection. Toxoplasmic antibodies were detected in 958 of 1,343 (71.3%) samples by IgG,A,M-IIF assay; 114 of 958 (11.9%) samples had titers of 1:1,024, and 844 of 958 (88.1%) samples had titers of 1:512. Follow-up of the latter failed to show any significant titer increases (with one exception). In 385 of 1,343 (28.7%) samples from noninfected patients, seroconversion was not detected within 6 months.

Joint detection of acute-infection markers (IgA and IgM). In 114 patients with IgG,A,M-IIF titers of 1:1,024, a joint search for acute-infection markers (IgG,A,M-IIF with absorbed sera) was carried out. The results were compared with those obtained by the tests routinely used for IgA and IgM detection (IIF and EIA).

IgG,A,M-IIF with absorbed sera versus IgA- and IgM-IIF and EIA. Of 114 patients with IgG,A,M-IIF titers of 1:1,024, 90 (78 women and 12 men) were classified as chronically infected individuals because they presented neither IgA nor IgM antibodies, as measured by both techniques for IgA and total IgG from these sera. One must take into account that there are exceptional cases of very high levels of total IgG where absorption is not totally effective. In fact, we recently evaluated a patient who presented monoclonal gammopathy with high total IgG levels, showing the presence of specific IgA and IgM antibodies by IgG,A,M-IIF assay with absorbed serum as well as that of total IgG by R-EIA-IgM with previously absorbed serum. Both DS-EIA-IgM and R-EIA-IgA rendered negative results.

DISCUSSION

During the course of toxoplasmosis, the kinetics of IgA antibodies are similar to those displayed by IgM antibodies (6, 36, 49); therefore, joint detection of IgA and IgM antibodies may be useful regardless of whether it may be discriminated at the expense of which antibody the reaction proved positive. The presence of either of them is sufficient to warn the attending physician to ascertain whether the studied patient is in the acute phase of infection, as measured by both techniques in every case, confirming the complete removal of both specific IgG and total IgG from these sera.

Control of serum IgG removal. The 114 absorbed samples were studied by IgG-IIF and RID$_{L}$-IgG, with negative results by both techniques in every case, confirming the complete removal of both specific IgG and total IgG from these sera. One must take into account that there are exceptional cases of very high levels of total IgG where absorption is not totally effective. In fact, we recently evaluated a patient who presented monoclonal gammopathy with high total IgG levels, showing the presence of specific IgA and IgM antibodies by IgG,A,M-IIF assay with absorbed serum as well as that of total IgG by R-EIA-IgM with previously absorbed serum. Both DS-EIA-IgM and R-EIA-IgA rendered negative results.

TABLE 1. Comparison of results by different techniques for four patients with only IgA antibodies by monospecific IIF

<table>
<thead>
<tr>
<th>Unabsorbed sera</th>
<th>Absorbed sera</th>
<th>No. of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS-EIA-IgA</td>
<td>IgG-A,M-IIF</td>
<td>IgA-IIF</td>
</tr>
<tr>
<td>+d</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+f</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>r</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

* a, positive; r, negative.
* Without IgG; 1/10 absorbed sera with anti-human IgG.

TABLE 2. Comparison of results by different techniques for seven patients with only IgM antibodies by monospecific IIF

<table>
<thead>
<tr>
<th>Unabsorbed sera</th>
<th>Absorbed sera</th>
<th>No. of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS-EIA-IgM</td>
<td>IgG-A,M-IIF</td>
<td>IgA-IIF</td>
</tr>
<tr>
<td>+d</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+e</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+g</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

* a, positive; r, negative.
* Without IgG; 1/10 absorbed sera with anti-human IgG.

TABLE 3. Comparison of results by different techniques for three patients with IgM and IgA antibodies

<table>
<thead>
<tr>
<th>Unabsorbed sera</th>
<th>Absorbed sera</th>
<th>No. of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS-EIA-IgM</td>
<td>IgG-A,M-IIF</td>
<td>IgA-IIF</td>
</tr>
<tr>
<td>+d</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+f</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

* a, positive.
* Without IgG; 1/10 absorbed sera with anti-human IgG.

TABLE 3. Comparison of results by different techniques for three patients with IgM and IgA antibodies

<table>
<thead>
<tr>
<th>Unabsorbed sera</th>
<th>Absorbed sera</th>
<th>No. of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS-EIA-IgM</td>
<td>IgG-A,M-IIF</td>
<td>IgA-IIF</td>
</tr>
<tr>
<td>+d</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+f</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

* a, positive.
* Without IgG; 1/10 absorbed sera with anti-human IgG.

* IgA and IgM were detected simultaneously by IIF.
* Titer, 1:1,024.
* Titer, 1:2,048.
* Titer, 1:4,096.
* Titer, 1:1,280.
* Titer, 1:512.
* Titer, 1:256.
* Titer, 1:1,024.
* Titer, 1:160.
* Titer, 1:80.
acute or chronic stage of infection. It is widely documented that to increase the specificity and sensitivity of IgA and IgM detection, it is essential to perform preabsorption of serum IgG, but such treatment has not yet been considered to detect both immunoglobulins jointly.

The IgG,A,M-IIF assay with absorbed sera was validated against routine techniques, and the results allow the following conclusions to be drawn. (i) It may be used to detect IgA and IgM antibodies together, providing data similar to those of different tests (IIF and EIA) for detecting these immunoglobulins (IgA and IgM) individually. (ii) In patients with acute-infection markers, as determined by conventional IIF, it must be considered that not only can the presence of specific IgG mask the detection of specific IgM and/or IgA but also that high concentrations of specific IgA can inhibit the detection of small amounts of specific IgM and vice versa. By capture techniques (lacking interferences produced by high concentrations of other immunoglobulins, such as DS-IgM-EIA and R-EIA-IgA) (12, 14, 15, 44, 46), some sera produced negative IgM-IIF results and positive IgM-EIA results and others produced negative IgA-IIF results and positive IgA-EIA results, specially at high titers of the other acute-infection marker; joint detection of IgA and IgM by IgG,A,M-IIF assay with absorbed sera avoids this problem because at least one of these antibodies is invariably detected. (iii) In an initial step, simultaneous IgG,A,M-IIF assays with absorbed and unabsorbed sera may be usefully implemented (Fig. 1). This follow-up is also valid when instead of the IgG,A,M-IIF assay, the detection of specific IgG is carried out by different techniques, including IgG-IIF, IgG-EIA, and direct agglutination with 2-mercaptoethanol (9). When a sample tested by IgG,A,M-IIF is positive with unabsorbed sera but negative with absorbed sera, such results reflect the absence of specific IgA and IgM, indicating chronic infection (in unusual cases, due to early infection, the specific antibodies have not yet been produced [49]). When a positive IgG,A,M-IIF assay is obtained with absorbed sera, serum IgG absorption must be checked by RIDE-lgG before performing confirmatory tests or evaluating results in serial samples obtained at least 3 weeks apart and run in parallel.

In an initial stage, the proposed algorithm constitutes a tool for providing useful information on specific humoral immune responses by a test involving only one technique (IIF), one conjugate (FITC-anti-IgG,A,M), and only one sample (with and without previous absorption). This type of approach could be used in the detection of not only other parasitoses but also bacterial and viral infections. The same principle could be applied to EIAs which detect total immunoglobulins, widening

![Algorithm for the detection of toxoplasma infection in pregnant women. IgA and IgM were detected simultaneously by IgG,A,M-IIF with absorbed sera; +, positive; −, negative.](http://jcm.asm.org/)

FIG. 1. Algorithm for the detection of toxoplasma infection in pregnant women. IgA and IgM were detected simultaneously by IgG,A,M-IIF with absorbed sera; +, positive; −, negative.
TOXOPLASMOsis and IgA and IgM DETECTION

23. Joassin, L., and M. Reginster. 1986. Eliminación de nonspecific cysteogalma-

virus immunoglobulin M activities in the enzyme-linked immunosorbent assay

24. Lappalainen, M., P. Koskela, M. Koskineni, P. Ammālā, V. Hilessmaa, K.

Teramo, K. O. Raivio, J. S. Remington, and K. Hedman. 1993. Toxoplas-

mosis acquired during pregnancy: improved serodiagnosis based on avidity

25. Lappalainen, M., M. Koskineni, V. Hillesmaa, P. Ammālā, K. Teramo, P.

Koskela, M. Lebech, K. O. Raivio, and K. Hedman. 1995. Outcome of

children after maternal primary toxoplasmosis infection during pregnancy

and performance of the FTAsbs (IgM) test in congenital syphilis. Genito-

32. Naot, Y., R. G. Douglas, and J. S. Remington. 1982. Duration of IgM antibodies to Toxoplasma gondii after acute acquired toxoplasmosis. J. In-

Gynaecol. 7:107–137.

38. Saathoff, M., and H. M. Seitz. 1992. Detection of toxoplasma specific IgA

and IgM antibodies in serum samples of adults with acquired toxoplasma infection. Z. Geburtsheilk. Perinatol. 196:221–223.

43. Sumaya, C. V., Y. Ench, M. A. Carrillo, and R. M. Pope. 1984. Use of a

