Most cases of acute community-acquired bacterial sinusitis are believed to be secondary to a preceding viral upper-respiratory-tract infection. This view has been supported by earlier studies in which respiratory viruses were isolated from sinus aspirates of patients with acute community-acquired sinusitis (ACAS) (5, 9). More recently, sinus abnormalities were detected by magnetic resonance imaging in volunteers with experimental rhinovirus colds (17) and by computed tomography in patients with natural rhinovirus colds (7). An important question in understanding the pathogenesis of viral sinusitis is whether direct viral invasion of the sinus cavity or inflammatory events in adjacent areas in the nose, such as the ostomeatal complex, are responsible for the abnormalities in the sinus cavity.

The agents most frequently implicated as causes of viral upper-respiratory-tract infections are human rhinoviruses (HRV) and human coronavirus (HCV) (6, 15). The advent of reverse transcription-PCR (RT-PCR) has enabled the detection of picornavirus RNA directly in clinical samples with higher levels of sensitivity (2, 8, 11) than viral isolation in cell culture. The detection of picornavirus RNA directly in clinical samples with the advent of reverse transcription-PCR (RT-PCR) has enabled the detection of rhinovirus in sinus brushings of patients with acute community-acquired sinusitis (ACAS) (5, 9). More recently, sinus abnormalities were detected by magnetic resonance imaging in volunteers with experimental rhinovirus colds (17) and by computed tomography in patients with natural rhinovirus colds (7). An important question in understanding the pathogenesis of viral sinusitis is whether direct viral invasion of the sinus cavity or inflammatory events in adjacent areas in the nose, such as the ostomeatal complex, are responsible for the abnormalities in the sinus cavity.

The agents most frequently implicated as causes of viral upper-respiratory-tract infections are human rhinoviruses (HRV) and human coronavirus (HCV) (6, 15). The advent of reverse transcription-PCR (RT-PCR) has enabled the detection of rhinovirus RNA directly in clinical samples with higher levels of sensitivity (2, 8, 11) than viral isolation in cell culture (2, 11). In the present study, the maxillary sinus of adult patients with ACASs was punctured, and specimens obtained with a cytologic brush were tested for HRV RNA and HCV RNA by RT-PCR.

MATERIALS AND METHODS

Patients. Twenty adult patients with diagnoses of ACASs based on clinical findings were studied between May and July 1996 in the Department of Otolaryngology of the University Hospital of Helsinki. All patients had purulent rhinorrhea and nasal obstruction, and most had facial pain. The patients had not been treated with antibiotics, and the duration of their symptoms was less than 2 weeks. Sinus X rays were obtained for 18 of the patients. Ten patients had an air-fluid level in the maxillary sinus, and six of these had culture positive for bacteria. The washings were collected from the nares and inoculated with cotton swabs onto agar transport tubes (Transpuri; Orion Diagnostica, Espoo, Finland), and bacteria were identified by standard laboratory procedures.

Specimen collection. Prior to puncture, a nasal swab was obtained from each patient at the area of puncture below the inferior turbinate and was placed in phosphate-buffered saline (PBS) for viral culture and for RT-PCR. The puncture area was then anesthetized topically with 10% lidocaine and adrenaline. After puncture with a needle, a bronchoscope brush (diameter, 2 mm; length, 11 mm) was passed through the needle into the sinus and rotated. Upon removal of the brush, 0.5 ml of PBS was aspirated. Samples were stored at −70°C until they were processed for RT-PCR. Samples were also cultured for HRV on monolayers (0.1 ml per monolayer) of human embryonic fibroblasts (WI-38 strain) and HeLa-1 cells by previously described methods (3). Following collection of the brush samples, anterolavage with saline was done to obtain samples for bacterial culture. The washings were collected from the nares and inoculated with cotton swabs onto agar transport tubes (Transpuri; Orion Diagnostica, Espoo, Finland), and bacteria were identified by standard laboratory procedures.

RT-PCR. (i) HRV RT-PCR. Total RNA was extracted from 100 μl of sample, diluted in an equal volume of PBS, by matrix affinity chromatography (QiAamp blood kit; Qiagen, Chatsworth, Calif.). The RNA was eluted in 20 μl of the kit’s elution buffer. HRV reverse transcription was carried out with primer 2 as previously described, except that 10 μl of RNA was used (2). HRV reverse transcription (Mooney murine leukemia virus reverse transcriptase; Gibco BRL, Gaithersburg, Md.) reaction mixtures were heated at 95°C for 10 min to inactivate reverse transcriptase and were mixed with 24 μl of PCR mixture, containing 2 μl of primer 1 primer and 5.6 μl of PCR buffer K (Invitrogen, San Diego, Calif.), to adjust the final concentrations of primers and MgCl₂ to 0.8 μM and 2.7 mM, respectively, and to adjust the final pH to 9.0. While tubes were held at 95°C, 2.5 U of Taq polymerase (Applied Biosystems, Foster City, Calif.) diluted in 5 μl of H₂O was added, and 35 cycles of PCR were performed with published parameters (2). Rhinovirus type 39 (American Type Culture Collection, Rockville, Md.) was used as a positive control, and normal nasal washings, as well as sterile PBS, were used as negative controls, in each reaction series.

(ii) HCV RT-PCR. The procedure for HCV RT-PCR was the same as that for HRV RT-PCR, except that pairs of primers for both coronavirus OC43 and coronavirus 229E were used in the same reaction, in a multiplex format, and the parameters for 35 cycles of denaturation, annealing, and DNA synthesis were 2 min at 95°C, 1 min at 60°C, and 1 min at 72°C, respectively. This was followed by a final extension period of 10 min at 72°C. HCV 229E (kindly provided by Kathryn V. Holmes, University of Colorado) and OC43 (American Type Culture Collection) were used as positive controls, and PBS was used as a negative control, in each reaction series.

Precautions to minimize cross-contamination of the samples with PCR product included the use of positive displacement pipettes and separate rooms for sample preparations and amplification analysis. During the various steps of the work, separate pipettes, gloves, and coats were used. Nonincorporated primers and deoxynucleoside triphosphates were removed from PCR products by using a SELECT-B spin column (5’Prime). The product was denatured at −20°C until it was used for hybridization.

ACKNOWLEDGMENTS

This study was supported by grants from the Academy of Finland and the Sigrid Jusélius Foundation. We thank Elke Kato, Department of Medical Microbiology, Helsinki University Central Hospital, for providing the HCV 229E isolate. We also thank the following companies for providing reagents: Biomedics Oy (Tampere, Finland), Marburg (Marburg, Germany), Gibco BRL (Gaithersburg, Md.), and the Center for Genomic Sciences (Rockville, Md.).

*Corresponding author. Mailing address: University of Virginia, Health Sciences Center, Box 473, Charlottesville, VA 22908. Phone: (804) 924-5059. Fax: (804) 924-9065.
RESULTS

Picornavirus RNA. Picornavirus RNA was detected by RT-PCR in the maxillary sinus brushings from 8 of 20 patients with ACAS (40%) and in the nasal swab samples from 9 of 20 patients (45%) (Table 1). Since the assay used is picornavirus specific (2), we tested the picornavirus-positive samples with an enterovirus-specific probe and found that none of the RT-PCR picornavirus products hybridized with the enterovirus probe. For seven patients (35% of the total), both maxillary sinus and nasal samples were positive for HRV. Overall, HRV was detected in 10 of 20 patients (50%). By culturing of nasal swabs and maxillary brush samples, HRV was detected in both sample types from two patients and in only the maxillary sinus sample from one patient. All HRV culture-positive samples were also RT-PCR positive. The culture-positive cases all presented within 8 days of symptom onset, whereas the majority (five of eight) of those with negative cultures but positive RT-PCR for HRV RNA presented later (Table 1).

HCV RNA. None of the sinus samples were positive for HCV 229E or OC43. Three nasal swab samples were positive for HCV OC43, and two of these patients had positive bacterial cultures (Table 1). All three of the HCV-positive patients were negative for rhinovirus infection by RT-PCR and culture.

Bacterial culture. Bacterial cultures were positive in 10 (50%) of 20 patients. RT-PCR of sinus brushings was positive for HRV RNA in 5 of 10 samples negative for bacteria and in 3 of 10 samples positive for bacteria. Of 10 HRV-infected patients, 5 had positive bacterial cultures of antral washings. In five samples (25% of the cases), both the RT-PCR and bacterial cultures were negative, and in three samples (15% of the cases), both the RT-PCR and bacterial cultures were positive. The two samples from middle-ear effusions were negative by bacterial culture and by RT-PCR for HRV and HCV RNA.

DISCUSSION

In the present study, we found that HRV can be detected by culture in 15% of the brush samples obtained by puncture of the maxillary sinuses in adults with ACAS and can be detected by RT-PCR in 40% of these samples. Our culture results con-

TABLE 1. Data from 20 adult patients with acute community-acquired maxillary sinusitis

<table>
<thead>
<tr>
<th>Duration of symptoms (days)</th>
<th>Abnormal X-ray result</th>
<th>Rhinovirus (max/nose), by:</th>
<th>Coronavirus OC43 (max/nose), by RT-PCR</th>
<th>Bacterium, by culture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RT-PCR</td>
<td>Culture</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+/+</td>
<td>--/--</td>
<td>Negative</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+/+</td>
<td>--/--</td>
<td>Negative</td>
</tr>
<tr>
<td>6</td>
<td>NT</td>
<td>+/-</td>
<td>+/-</td>
<td>Fusobacterium sp.</td>
</tr>
<tr>
<td>6</td>
<td>++</td>
<td>--/+</td>
<td>--/--</td>
<td>Streptococcus milleri</td>
</tr>
<tr>
<td>7</td>
<td>++</td>
<td>--/+</td>
<td>--/--</td>
<td>Streptococcus pneumonia</td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>+/+</td>
<td>--/--</td>
<td>Negative</td>
</tr>
<tr>
<td>8</td>
<td>++</td>
<td>+/+</td>
<td>--/--</td>
<td>Haemophilus influenzae</td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td>--/+</td>
<td>--/--</td>
<td>S. pneumoniae</td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>--/+</td>
<td>--/--</td>
<td>Negative</td>
</tr>
<tr>
<td>12</td>
<td>++</td>
<td>--/+</td>
<td>--/--</td>
<td>Negative</td>
</tr>
<tr>
<td>12</td>
<td>+</td>
<td>--/+</td>
<td>--/--</td>
<td>Klebsiella pneumoniae</td>
</tr>
<tr>
<td>13</td>
<td>++</td>
<td>+/+</td>
<td>--/--</td>
<td>Negative</td>
</tr>
<tr>
<td>13</td>
<td>+</td>
<td>+/+</td>
<td>--/--</td>
<td>Negative</td>
</tr>
<tr>
<td>13</td>
<td>+</td>
<td>+/+</td>
<td>--/--</td>
<td>Negative</td>
</tr>
<tr>
<td>13</td>
<td>NT</td>
<td>+/+</td>
<td>--/--</td>
<td>H. influenzae</td>
</tr>
<tr>
<td>13</td>
<td>+</td>
<td>+/+</td>
<td>--/--</td>
<td>S. pneumoniae</td>
</tr>
<tr>
<td>13</td>
<td>+</td>
<td>+/+</td>
<td>--/--</td>
<td>H. influenzae and S. pneumonia</td>
</tr>
<tr>
<td>13</td>
<td>+</td>
<td>+/+</td>
<td>--/--</td>
<td>Negative</td>
</tr>
</tbody>
</table>

* Each row of data represents one patient.
+ +, maxillary effusion; +, mucosal thickening or thick secretions; NT, not tested.
max/nose, maxillary sinus sample/nasal sample.
All nose and maxillary samples were negative for HCV 229E RT-PCR.
Cultures were not quantitative.
Middle-ear effusions from these patients were negative by HRV and HCV RT-PCR and bacterial culture.
firm earlier studies of ACAS which reported recovery of HRV in maxillary secretions aspirated from 8% and 7% of patients (5, 9). However, the use of RT-PCR enhanced detection of HRV infection, particularly in samples that were obtained during the 2nd week after the onset of illness. These results are consistent with previous studies of persons with acute respiratory illness which found a high prevalence of positive RT-PCR results for picornavirus in association with negative cultures (11). While our findings may have resulted from viral replication in the sinus, they may also have been caused by the presence in the sinus of virions or viral RNA produced by replication elsewhere in the upper-respiratory tract epithelium and introduced during coughing or sneezing, or potentially even by HRV RNA introduced to the sinus at the time of puncture. Direct demonstration of viral replication in situ would provide definitive evidence of productive HRV infection in the sinus mucosa. While not proving direct viral causation for acute sinusitis during the course of HRV infection, the observation that HRV was detected in the sinus in 40% of 20 patients with acute sinusitis and overall in 50% of these patients strongly suggests the importance of HRV infection in predisposing to ACAS.

These samples were also tested for another important cause of upper-respiratory-tract infections, HCV (15). Although the coronavirus OC43 was found in three nasal swab samples, none of the sinus samples were positive for HCV 229E or OC43. The 15% coronavirus infection rate is consistent with the findings of prior studies addressing the contributions of coronaviruses to colds (15). Of note, HCVs typically cause infections during the winter months, and our patients were studied during the late spring and early summer. Overall, HRV or HCV infection was documented in 65% of these cases. Other respiratory viruses were not sought in the context of these studies, in part because of the limited sample volume and because of patient sampling after the end of the influenza and respiratory syncytial virus seasons. However, the findings indicate that a preceding respiratory viral infection is associated with the majority of ACAS cases.

These findings support the concept that viruses predispose to bacterial infection of the maxillary sinuses. Although the bacterial causes of ACAS have been extensively studied, few prospective studies have assessed the role of viruses in the etiology of these infections (5, 9). In a study of adults experimentally infected with HRV, changes in the paranasal sinuses were observed by magnetic resonance imaging in 33% of volunteers (17). In natural colds, sinus abnormalities are observed by computed tomography in over 85% of patients (7). These findings support the concept that viruses predispose to bacterial infection of the maxillary sinuses. Although the bacterial causes of ACAS have been extensively studied, few prospective studies have assessed the role of viruses in the etiology of these infections (5, 9). In a study of adults experimentally infected with HRV, changes in the paranasal sinuses were observed by magnetic resonance imaging in 33% of volunteers (17). In natural colds, sinus abnormalities are observed by computed tomography in over 85% of patients (7). These changes resolved spontaneously after several weeks in most patients. These studies indicate that an upper-respiratory viral infection may induce paranasal sinus effusions or mucosal thickening indistinguishable from that observed in acute bacterial sinusitis. We found direct evidence of coinfection by HRV and bacteria in three (15%) of our patients. Although the mechanisms are not defined, earlier studies found that rhinovirus-bacterium coinfection was an indicator of a poor prognosis of acute otitis media during antibiotic treatment (1, 16). While the same could be true with acute sinusitis as well, the limited number of patients we studied does not allow conclusions in this regard. However, the importance of HRV infection in causing sinus disease alone and in conjunction with bacteria raises the possibility that early treatment of HRV colds with specific antirhinovirus agents could have an impact on the risk of development of sinusitis.

ACKNOWLEDGMENTS

This work was in part supported by grants from the Medical Research Council of the Academy of Finland and the Paulo Foundation, Helsinki, Finland.

The authors thank Jack M. Gwaltney, Jr., for his critical review of the manuscript.

REFERENCES