The species Clostridium botulinum is divided into seven toxigenic types, A through G, on the basis of the serological specificity of the neurotoxins they produce. Three of these types, A, B, and E, are the ones most frequently associated with botulism in humans. Additionally, type F has been associated with several outbreaks among humans, and type G has also been involved in several human cases. Botulism in humans occurs in three forms: food-borne botulism, wound botulism, and infant botulism. Recently, three infant botulism cases, two in Rome, Italy (1, 5), and one in New Mexico (3), have been reported in which clostridial species other than C. botulinum produced botulinum toxin. Clostridium butyricum producing type E botulinum toxin was isolated from the cases in Rome, and Clostridium baratti producing type F botulinum toxin was isolated from the case in New Mexico.

In January 1994, six cases of clinically diagnosed food-borne type E botulism occurred in Guanyun, Jiangsu province, China. These people ingested salted and fermented paste made of soybeans and wax gourds (9). In this outbreak, the toxin, which was neutralized by type E botulinum antitoxin, was detected in the implicated food. However, C. botulinum type E could not be isolated, although numerous lipase-positive colonies were examined. These findings prompted us to examine the implicated food for neurotoxigenic organisms other than C. botulinum.

In this paper we describe the characteristics of a neurotoxigenic C. butyricum isolate from the implicated food in the food-borne botulism cases, which seem to be the first outbreak due to the organism.

Direct inoculation of the implicated food on agar plates was not performed. To isolate the causative organism from the food, we employed a method for isolating C. botulinum from soil reported by Yamakawa and Nakamura (8). In this method, each test material is examined with a small amount of inoculum and multiple cultures. In this study, several 1-g portions of the implicated food, salted and fermented paste made of soybeans and wax gourds, were inoculated into tubes (13 by 150 mm) containing 10 ml of chopped meat-glucose medium and incubated at 30°C for 5 days. The supernatants from the cultures were examined for botulimum toxin by a mouse toxicity test. Several 0.02-ml portions of the culture containing type E botulinum toxin were then spread on Trypticase peptone-yeast extract-glucose (20 g of Trypticase peptone [Becton Dickinson Microbiology Systems, Cockeysville, Md.]/liter, 5 g of yeast extract [Difco Laboratories, Detroit, Mich.]/liter, 5 g of glucose/liter, 0.9 g of NaCl/liter, 20 g of agar/liter [pH 7.2]) containing 5% egg yolk (egg yolk TYG) agar plates and incubated anaerobically for 2 days. Many lipase-positive colonies, which are produced by all known C. botulinum type E strains, several lecinthinase-positive colonies, and several lipase- and lecinthinase-negative colonies were selected, inoculated into chopped meat-glucose medium, and incubated anaerobically at 30°C for 5 days. The supernatants of the cultures were examined for botulimum toxin by a mouse toxicity test, and toxigenic colonies were purified on egg yolk TYG agar plates. Tests for biochemical properties were performed according to the methods of Yamakawa and Nakamura (8). Detection of the type E botulinum toxin gene by PCR was performed according to the procedure described by Szabo et al. (7): PCR templates were prepared from boiled cell lysates with the primers E1 (5'-TAATTATACACAGCCGCTA-3') and E2 (5'-TAGAGAAATATTGGAAACTG-3').

A total of 57 colonies were examined, 43 lipase positive, 9 lecinthinase positive, and 5 lipase and lecinthinase negative. All of the cultures from lipase-positive and lecinthinase-positive colonies were nontoxigenic. However, two of the cultures from lipase- and lecinthinase-negative colonies produced a toxin that was neuromyotropic and lethal to mice. This toxin was neutralized by monovalent type E botulinum antitoxin, but not by monovalent antitoxins for types A, B, C, D, F, and G. The culture had a toxin titer of 10^9 minimum lethal doses/ml, which increased to 10^9 minimum lethal doses/ml after treatment with trypsin.

One isolate, LCL 155, was further tested for biochemical properties in comparison with neurotoxigenic C. butyricum BL 6340 (kindly provided by C. L. Hatheway, Centers for Disease Control, Atlanta, Ga.), which had been isolated in Rome (1), C. butyricum NCIB 7423, and C. botulinum type E Iwanai. Colonies of this isolate on blood agar plates showed white-to-cream color, like C. butyricum. Cultural and biochemical properties of the isolate were consistent with those of neurotoxigenic C. butyricum BL 6340, except for arabinose fermentation.
and with those of \textit{C. butyricum} NCIB 7423, except for inulin fermentation, but were quite different from those of \textit{C. botulinum} type E Iwanai (Table 1). On the basis of these findings the isolate was identified as neurotoxicogenic \textit{C. butyricum}.

To confirm the presence of the type E botulinum toxin gene, PCR was performed with primers specific for that gene. A product of the expected size (446 bp) was amplified from the isolate as well as neurotoxicogenic \textit{C. butyricum} BL 6430 and \textit{C. botulinum} type E Iwanai (Fig. 1).

In the present study we showed that a neurotoxicogenic \textit{C. butyricum} organism was present in the food implicated in the outbreak of clinically diagnosed botulism which occurred in Jiangsu province, China, in 1994 (9). A causative organism linked to the outbreak has not been determined, since no clinical materials, such as sera, contents of the gastrointestinal tract, or feces, were examined for the presence of the botulinum toxin or organisms. However, the fact that toxic activity neutralizable by type E botulinal antitoxin was detected in the implicated food strongly suggests that the botulism cases were caused by food contaminated with neurotoxicogenic \textit{C. butyricum}. To the best of our knowledge, this is the first report of food-borne botulism caused by neurotoxicogenic \textit{C. butyricum}.

Neurotoxicogenic \textit{C. butyricum} was first reported in 1986 in two cases of infant botulism in Rome (1). Since then, the properties of a neurotoxin from this organism have been extensively studied physicochemically, immunologically, and genetically (2, 4, 6), but the environmental distribution of the organism still remains unclear. In food-borne botulism, toxin types causing disease are usually consistent with the \textit{C. botulinum} toxin types found locally in the soil. The food, salted and fermented paste made of soybeans and wax gourds, from which neurotoxin types found locally in the soil. The food, salted and fermented paste made of soybeans and wax gourds, from which neurotoxicogenic \textit{C. butyricum} was isolated in this study was homemade, suggesting that the organism may exist in the soil in the area where the food was prepared. A survey for the organism in the soil is in progress in our laboratories.

Our isolate was different from neurotoxicogenic \textit{C. butyricum} BL 6430 in arabinose fermentation and from \textit{C. butyricum} NCIB 7423 in inulin fermentation, suggesting that these properties may be useful in epidemiological respects.

\begin{table}
\centering
\begin{tabular}{|l|c|c|c|c|}
\hline
\textbf{Property} & \textbf{Isolate LCL 155} & \textbf{C. butyricum BL 6430} & \textbf{C. butyricum NCIB 7423} & \textbf{C. botulinum type E Iwanai} \\
\hline
Lecithinase & – & – & – & + \\
Lipase & – & – & – & + \\
Motility & + & + & + & + \\
Liquefaction of gelatin & – & – & – & + \\
2\% & – & – & – & + \\
10\% & – & – & – & + \\
Digestion of casein & – & – & – & + \\
Digestion of meat & – & – & – & + \\
Milk reaction & Curd & Curd & Curd & – \\
Indole production & – & – & – & + \\
Nitrate reduction & – & – & – & + \\
Acid production from: & & & & \\
Dextrin, fructose, glucose, maltose, mannose, ribose, starch, sucrose, trehalose & + & + & + & + \\
Amygdalin, arbutin, cellobiose, esculin, galactose, glycogen, lactose, melibiose, raffinose, salicin, xylose & + & + & + & + \\
Arabinose & – & + & – & – \\
Inulin & – & – & – & + \\
Adonitol, sorbitol & – & – & – & + \\
Dulcitol, erythritol inositol, mannitol, rhamnose, sorbose & – & – & – & + \\
Esculin hydrolysis & + & + & + & – \\
Starch hydrolysis & + & + & + & – \\
Sodium chloride tolerance & 2\% & 2\% & 2\% & 2\% \\
Product from peptone-yeast extract-glucose medium & ABIs & ABIs & ABIs & ABIs \\
\hline
\end{tabular}
\caption{Biological and biochemical properties of the isolate.}
\end{table}

a A, acetic acid; B, n-butyric acid; l, lactic acid, s, succinic acid. Capital letters, \geq10 mM; small letters, <10 mM.

REFERENCES

