Use of Synthetic Antigens Improves Detection by Enzyme-Linked Immunosorbent Assay of Antibodies against Abortigenic Chlamydia psittaci in Ruminants†

BERNHARD KALTEBOECK,1,* DAN HEARD,1 FRED J. DEGRAVES,2 AND NORBERT SCHMEER3

Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849-5519;
Department of Large Animal Surgery and Medicine, College of Veterinary Medicine, Auburn University, Alabama 36849-5522; and VT-F-Biologie, Bayer AG, Monheim, D-51368 Leverkusen, Germany

Received 22 January 1997/Returned for modification 3 March 1997/Accepted 3 June 1997

Synthetic peptide antigens were prepared for use in enzyme-linked immunosorbent assays (ELISAs) to detect serum antibodies against abortigenic strains of Chlamydia psittaci in livestock. Peptide antigens were identified with C. psittaci B577-immune sera by solid-phase scanning of overlapping octapeptides of variable domains (VDs) of the major outer membrane protein of C. psittaci serovar 1 (omp1 type C. psittaci B577). Two VD 4 regions and one VD 2 region were strongly reactive with all C. psittaci B577 antisera. Peptides encompassing these regions were synthesized with biotin and a serine-glycine-serine-glycine spacer at the N terminus and were attached to streptavidin-coated microtiter plates. In direct ELISAs with these plates, the synthetic peptides reacted with C. psittaci B577 antisera, but not with sera from specific-pathogen-free animals. Serum specimens from 40 sheep and 40 cattle, obtained from herds with abortion problems, were screened for antibodies by these C. psittaci B577 peptide ELISAs and an ELISA with recombinant, genus-specific Chlamydia lipopolysaccharide (LPS) antigen. Results from these newly developed ELISAs were compared to those from the reference C. psittaci B577 elementary body (EB) ELISA and the Chlamydia complement fixation test (CFT). The C. psittaci B577 peptide ELISAs, the LPS ELISA, and the EB ELISA correctly identified the presence or absence of antibodies against chlamydiae in all sheep and bovine sera. The Chlamydia CFT, which is the most widely accepted serodiagnostic method for chlamydial infections in animals, correctly identified the presence or absence of antibodies against chlamydiae in only 78 and 4.9% of sheep and bovine sera, respectively. These results suggest that the C. psittaci B577-peptide and Chlamydia LPS ELISAs are superior for the serodiagnosis of ruminant infections with abortigenic chlamydiae, since they are more sensitive than the CFT, they are easy to standardize, and they use readily available synthetic antigens instead of organism-derived CFT antigen.

The eubacterial genus Chlamydia comprises obligate intracellular organisms which exhibit a two-stage life cycle that alternates between infective (elementary body [EB]) and vegetative (reticulate body) forms. The genus Chlamydia includes four species: C. trachomatis, C. psittaci, C. pneumoniae, and C. pecorum (5, 8, 13). These bacteria can cause many diseases in human and animal hosts, notably, ocular, urogenital, respiratory, and intestinal infections. C. psittaci is of particular interest in veterinary medicine because of its broad host range and the variety of diseases that it may cause in susceptible animals (15). Infection of ruminants with serovar 1 of C. psittaci (omp1 type C. psittaci B577) is common and may result in enteritis, seminal vesiculitis, and abortion (1, 17, 18). The abortigenic potential of C. psittaci B577 applies not only to ruminants but also to humans with infections contracted from ruminants (1, 10).

Routine diagnosis of Chlamydia infection in animals is complicated by several factors. While isolation of the organism is preferable, it requires a facility experienced with tissue culture technique or chicken embryo culture. The serological diagnosis of chlamydial infection by the complement fixation test (CFT), EB enzyme-linked immunosorbent assay (ELISA), and the microimmunofluorescence test (MIF) is difficult to standardize and has traditionally been hindered by the cumbersome production of antigens in chlamydial culture. Additionally, the CFT and MIF are technically challenging and require skilled technicians to interpret the results. These problems restrict the use of CFT, EB ELISA, and MIF to a relatively small number of qualified laboratories. Therefore, simpler immunoassays with synthetic chlamydial antigens are needed.

Variable domains (VDs) 1, 2, and 4 of the major outer membrane protein (MOMP) contain the primary serovar-determining epitopes of chlamydiae (2, 4, 16). In this investigation, contiguous immunodominant peptides were then synthesized, and an ELISA method for the detection of antibodies against these antigens was established. In addition, a Chlamydia genus-specific ELISA was evaluated. The ELISA uses commercially produced microtiter plates coated with recombinant chlamydial lipopolysaccharide (LPS). Eighty sheep and cattle serum specimens obtained from herds with abortion problems were screened by these ELISAs. The peptide and LPS ELISA results were compared with those obtained by the C. psittaci B577 EB ELISA reference method (14) by CFT, the most widely used diagnostic method.

(Received 22 January 1997/Returned for modification 3 March 1997/Accepted 3 June 1997)
Sera. The rabbit and murine C. psittaci B577-immune sera used in peptide scanning and establishing the C. psittaci B577 ELISA were kindly provided by J. Storz, Louisiana State University. Ovine sera used both in peptide scanning and in screening for antibodies was obtained from a flock in Austria after an episode of chlamydial abortion, as verified by *Chlamydia omp1* PCR, immunohistochemical staining, and isolation of chlamydiae (unpublished data). Bovine sera were obtained from herds in Alabama with abortion problems of unknown etiology. Sheep sera was kindly provided by Sara Rowe from sera submitted to the C. S. Roberts Veterinary Diagnostic Laboratory, Auburn, Ala.) and from the Large Animal Clinic at the Auburn University College of Veterinary Medicine, Auburn, Ala. Normal mouse sera and rabbit preinoculation sera were used as negative controls in establishing the peptide antigen ELISA. Immunoglobulin-rich sera from bovine animals examined for a viral infection were used as negative controls in analyses of the bovine and ovine field serum specimens. For the sheep samples, immune serum from a lamb challenged with infectious bovine rhinotracheitis virus, kindly provided by D. R. Redman, Ohio State University, was used as a negative control. For the bovine samples, acute-phase immune sera from calves inoculated with bovine coronavirus or bovine diarrhea virus were used as negative controls.

Peptide scanning. Contiguous peptide epitopes of the *C. psittaci* B577 MOMP were identified by solid-phase peptide scanning with seven high-titer ovine, rabbit, and murine *C. psittaci* B577-immune serum specimens described above. Sequential octapeptides overlapping by seven residues and spanning VDs 1, 2, and 4 were synthesized by 9-fluoromethylcarbonyl chemistry on polychloromethyl pins in a microtiter plate format (Multipin NCP; Chiron Mimotopes Peptide Systems, San Diego, Calif.). The degree of reactivity of these peptides with the *C. psittaci* B577-immune sera was analyzed by ELISA in a modified microplate format as described previously (7). The raw optical density (OD) values obtained for each peptide were corrected for background interference and unspecific conjugate binding and were transformed to percent above the baseline signal generated by the 10 peptides demonstrating the lowest reactivity.

RESULTS

C. psittaci B577 MOMP epitope scanning. ELISA peptide antigens were defined by B-cell epitope scanning of VDs 1, 2, and 4 of the MOMP of *C. psittaci* B577. High reactive peptides were observed in all VDs. A VD 2 C-terminal peptide (QLPNVTQGV) was selected as an ELISA antigen (Fig. 1), and two VD 4 peptides (Fig. 2), VD 4-1 (LNLTTWNPITL) and VD 4-2 (ATALDTSNKFADFLQI), reacted strongly with all *C. psittaci* B577 antisera and were selected as antigens. These peptides include several of the mapped octapeptides presented in Fig. 1 and 2, and they were chosen because they were reactive with all antisera, in contrast to some octapeptides which were highly reactive with some antisera but not reactive with other antisera. Such peptides with inconsistent reactivities, like peptide GSSIAADQ in VD 2 (Fig. 1), are characterized by a high standard error of the mean. Amino acid sequences of the VD 2 peptide are present only in ruminant and avian strains of *C. psittaci* (12), and thereby, the VD 2 peptide might serve as a reagent promising narrow specificity for the detection of infections with these organisms. Peptide VD 4-1 is highly conserved among *C. psittaci*, *C. pecorum*, and *C. pneumoniae*, and thus has potential for broad specificity. Conversely, amino acid sequences of peptide VD 4-2 are present only in ruminant and feline *C. psittaci* strains. While some sera reacted strongly with the VD 1 peptides, other sera did not react with the same peptides (data not shown). Because of this inconsistent re-
antigens.

activity, peptide epitopes of VD 1 were not selected as

VOL. 35, 1997

VD 4-2 are unique for strains of

of 0.2 for specific reactivity. Sequences of peptides VD 2 and

in Fig. 3) produced ODs minimally above the OD cutoff value

produced higher ODs. The reactivity of rabbit immune sera

specimen 8 with peptide VD 2 (serum specimens 5 to 10 in Fig.

gens, while the

produced ODs of approximately 0.15 with all three peptide anti-

preinoculation sera (serum specimens 1 to 4 in Fig. 3) pro-

B577 VD 2, VD 4-1, and VD 4-2 and with the Chlamydia LPS antigen. For all

peptide and LPS ELISAs, the maximum averages of percent intra- and interassay variations were 7.6 and 8.5%, respectively. Negative control sera, when applied to the ELISAs, produced ODs of <0.1 and thereby were considered to lack reactivity.

All ovine serum specimens, but not the Chlamydia-negative ovine control serum, tested positive for specific antibodies in the C. psittaci B577 EB ELISA, although some of them reacted weakly (Fig. 4). Thus, positive and negative predictive values (6) of the C. psittaci B577 peptide and Chlamydia LPS ELISAs for the sheep specimens were 100%. The EB ELISA results were characterized by the serum specimens segregating into six groups ranging from low to high ODs, and thus, the values failed to correlate with the consistently high ODs that were obtained by peptide ELISAs and by the LPS ELISA in particular (Fig. 4). Thirty-one of 40 ovine serum specimens tested positive (≥1:10) by CFT, resulting in a positive predictive value of 100% and a negative predictive value of 10% for the CFT. Thus, the efficiency of the CFT in correctly classifying positive and negative antichlamydial seroreactivity in sheep was 78%. No correlation was observed between negative or low CFT titers and the OD values of the peptide, LPS, and EB ELISAs.

Following validation of the C. psittaci B577 peptide and Chlamydia LPS ELISAs, they were applied to tests with 40 bovine serum specimens obtained from herds with abortion problems of unknown etiology. The results of the ELISAs were compared to those of the CFT, which is widely used for the routine serodiagnosis of chlamydial infections in ruminants. While all bovine serum specimens were clearly reactive in the ELISAs, only one tested positive (≥1:10) by CFT (Fig. 5). Thus, the positive predictive value of the CFT for bovine sera was 100% and the negative predictive value was 2.5%. Overall, the results of the CFT correctly classified the presence or the absence of antibodies against chlamydiae in 49% of the bovine sera. Similar to the sheep sera, there was no correlation between the OD values of the three C. psittaci B577 peptide ELISAs and those of the Chlamydia LPS ELISA.

DISCUSSION

We have identified MOMP peptide epitopes of ruminant C. psittaci isolates which are suitable for use as reagents for the detection of antibodies against these chlamydiae. While reactivity of the C. psittaci-specific peptides C. psittaci B577 VE 2 and VE 4-2 with homologous antisera but not with heterologous C. pecorum antisera was expected, peptide C. psittaci B577 VE 4-1 unexpectedly was also nonreactive with the C. pecorum antisera. The hydrophobic peptide C. psittaci B577 VE 4-1 (LNLTWNPTLLG) has an amino acid sequence that is highly conserved throughout the genus Chlamydia, and the motif LTTWNPTLLG is present in the MOMPs of C. psittaci B577 as well as all strains of C. pecorum. In C. trachomatis, the corresponding peptide is an immunodominant linear epitope in some serovars, while it is not antibody accessible in others (2, 4, 16, 19). Thus, differential folding of identical peptides might or might not render them linear epitopes. Also, amino acid changes frequently do not substantially alter the specificities of antibody-binding domains, presumably because of conserved conformation (9). Without extensive testing with antisera against a panel of serovars of all chlamydial species, the extent of cross-reactivity of the C. psittaci B577 peptide epitopes cannot be ascertained. Such studies should be per-
formed to explore the full potential of peptide ELISAs for chlamydial seroepidemiology and to compare them to the MIF method for the serotyping of chlamydiae.

When the *C. psittaci* B577 peptide and *Chlamydia* LPS ELISAs were applied to specimens from ruminants in the field in this study, they demonstrated a very high prevalence of serum antibodies against chlamydiae and also high levels of these antibodies. We maximized the sensitivity of the detection system by using horseradish peroxidase conjugates in combination with the tetramethylbenzidine substrate and a stopping reagent. Saturation of the substrate reaction might have occurred in some assays, and therefore, even with resulting high OD values above 2.0, the OD values might not have reflected accurately the amount of antibody present. This may have been particularly true for the LPS ELISA with the sheep sera. Use of alkaline phosphatase conjugates and *p*-nitrophenylphosphate substrate might restore linearity at high absorption values.

The OD values with negative control ruminant sera were below 0.1 OD. Because of the ubiquity of antichlamydial antibodies in ruminants, selection of appropriate negative control sera was crucial. To best simulate samples from animals in the

FIG. 3. Rabbit and mouse sera tested by ELISA with biotinylated *C. psittaci* B577 MOMP peptide antigens attached to streptavidin-coated microtiter plates. The means ± standard errors of the means of OD values of triplicate determinations for each peptide and animal are plotted. Samples 1 to 4, normal mouse and rabbit preinoculation sera; samples 5 to 10, *C. psittaci* B577-immune sera; samples 11 and 12, *C. pecorum*-immune sera. OD_{450 nm}: OD at 450 nm.

FIG. 4. Summary of serological data obtained from 40 ovine serum specimens from animals in the field. Ovine sera were placed in six groups according to their EB ELISA ODs. The mean ± standard error of the mean absorption at 450 nm (OD_{450 nm}) corrected by subtracting background interference is shown for each group of EB ELISAs, *C. psittaci* B577 peptide ELISAs, and *Chlamydia* LPS ELISAs. CFT results are presented as the logarithm of the reciprocal CFT titer. Group 1 (*n* = 9), EB ELISA OD of ≤0.999; group 2 (*n* = 6), OD of 1.0 to 1.499; group 3 (*n* = 7), OD of 1.5 to 1.749; group 4 (*n* = 4), OD of 1.75 to 1.999; group 5 (*n* = 9), OD of 2.0 to 2.499; group 6 (*n* = 5), OD of ≥2.5.
field with high immunoglobulin content, we used sera from gnotobiotic animals after challenge with viral pathogens. The low absorption values of these sera confirmed that OD values of 0.15 and above represented specific reactivity with chlamydial antigens.

The comparison of data obtained from applying the peptide ELISA, LPS ELISA, EB ELISA, and CFT to ruminant serum specimens yielded several important observations. The ovine specimens segregated into six groups by the EB ELISA, reflective of low to high OD values (Fig. 4), but this segregation was not duplicated in the other test systems. Groups 1 and 2, with lower EB ELISA OD values, did have corresponding low CFT titers, but the correlation was not maintained for the other groups. The distribution of OD values of the peptide and LPS ELISAs was relatively consistent in all groups, but the values were not correlative between the assays. A similar lack of correlation was observed between all tests of bovine sera (Fig. 5). While this may imply an inability of the peptide and LPS ELISAs to correctly differentiate between higher and lower concentrations of serum antibodies, the more likely explanation is that (i) the EB ELISA and particularly the CFT are not sensitive enough to indicate the correct serum antibody concentration for some specimens, and (ii) the lack of correlation reflects the inherently variable antibody response against single epitopes versus those against the multiepitope, organismal antigens used in EB ELISA and CFT (3).

The obvious lack of sensitivity of the CFT, particularly for antibodies in the bovine sera, might be explained by (i) inconsistent quality of the antigen, (ii) detection of the complement-binding subset of immunoglobulin isotypes only, (iii) low level of production and/or short half-life of complement-fixing antibodies, and (iv) inefficient binding of the heterologous guinea pig complement by ruminant, particularly bovine, antibodies. In fact, Perez-Martinez et al. (14) have demonstrated that the addition of bovine complement greatly improved the sensitivity of CFT when applied to bovine sera.

While further testing of the peptide and LPS ELISAs at low and intermediate serum antibody concentrations is warranted, it is clear that use of the CFT as the standard test for detection of antibodies against chlamydiae in ruminants should be discontinued. It has poor efficiency, is technically challenging, is difficult to standardize, and cannot be automated. Results with the C. psittaci B577 peptide and Chlamydia LPS ELISAs suggest that they are superior replacements.
ACKNOWLEDGMENTS

We thank Ernst Heinen, Maria Müller, and Kelle M. Dodson for excellent assistance.

This research was supported by grant ALAV-0276 from the Food Animal Health and Disease Research Program of the College of Veterinary Medicine, Auburn University, and by funds from Bayer AG, Monheim, Germany.

REFERENCES