Fatal Pulmonary Infection with *Mycobacterium celatum* in an Apparently Immunocompetent Patient

IRENE BUX-GEWEHR,¹ HANS P. HAGEN,¹ SABINE RÜSCH-GERDES,² AND GERHARD E. FEURLE¹*
I. Medizinische Klinik, DRK-Krankenhaus Neuwied, 56564 Neuwied,¹ and Forschungszentrum Borstel, 23845 Borstel,² Germany

Received 2 May 1997/Returned for modification 31 May 1997/Accepted 5 November 1997

Mycobacterium celatum is a recently described mycobacterium isolated from patients who have suppressed cell-mediated immunity, such as AIDS. We present here, to our knowledge, the first report of a fatal pulmonary infection caused by *M. celatum* in a 73-year-old immunocompetent female patient. The mycobacterium was identified by a 16S rRNA sequence analysis.

Mycobacterium celatum is a recently described nontuberculous mycobacterium (3, 18). These nontuberculous, or atypical, mycobacteria are found widely in nature. Only a few species are pathogenic in humans. The epidemiology of these organisms is not well understood, but person-to-person transmission has never been demonstrated. Most infections occur in patients with suppressed cell-mediated immunity, such as AIDS (6, 9, 13, 17). Immunocompetent patients are rarely infected. Single cases of pulmonary infection or lymphadenitis caused by *Mycobacterium scrofulaceum*, *Mycobacterium avium* complex, or *Mycobacterium kansasi* have been observed (1). One child with lymphadenitis caused by *M. celatum* has been reported (8). To our knowledge, a pulmonary infection by *M. celatum* is an immunocompetent patient has not been described.

Case report. A 73-year-old female Caucasian patient (163 cm, 61 kg) developed a nonproductive cough. Her medical and family histories were unremarkable, apart from diabetes mellitus type 2 diagnosed in 1985 and treated with glyburide (glibenclamide) (HbA1, 10.5%). Physical examination revealed no pathological findings except moist rales in the upper left lung. A chest X ray (Fig. 1) and the presence of acid-fast bacteria in the gastric juice were identified by a 16S rRNA sequence analysis.

Laboratory analysis revealed acid-fast bacteria in the gastric juice was not cultured. The isolated mycobacterium grew at 31 to 45°C; it was hydrolysis negative, nitrate reductase negative, arylsulfatase negative, and nitric acid and pyrazinamidase positive. DNA probes (Accuprobe; Gen-Probe Inc., San Diego, Calif.) specific for *M. tuberculosis* complex were positive after 5 min but negative after 10 min of hybridization. The gene fragment of the 16S rRNA was sequenced as described previously (3) and identified as belonging to *M. celatum*. Susceptibility testing by the proportion method with Löwenstein-Jensen medium revealed resistance to isoniazid, rifampin, and pyrazinamide but sensitivity to ethambutol. These results were confirmed by a radiometric method (BACTEC 460TB).

Discussion. To our knowledge, this is the first report of a pulmonary infection by *M. celatum* in a patient with apparently normal cellular immunity. This species was initially recognized by biochemical reactions similar to those of *M. avium* but presented a mycolic acid pattern that was like that of *Mycobacterium xenopi* (4, 15). Also, the DNA probe used for culture confirmation may give misleading results, because the *M. tuberculosis* DNA probe shows cross-reactivity in cases of *M. celatum* infection, causing false-positive hybridization signals (5 min hybridization time) (2, 16). Identification of *M. celatum* has been made possible by restriction fragment length polymorphism analysis of the amplified sequence of the Hsp65 gene, multilocus enzyme electrophoresis, and 16S rRNA sequence analysis (3).

M. celatum cannot be identified by biochemical characteristics. At present the most practical way to distinguish *M. celatum* from other mycobacteria seems to be a positive DNA hybridization signal for *M. tuberculosis* complex at 5 min but negative hybridization at 10 min with the Accuprobe test.

Our patient did not have AIDS, and the strongly positive intracutaneous reaction to tuberculin indicated cellular immunocompetence. The total T4 helper cell number was low due to...
lymphopenia. The T4/T8 ratio was in the normal range. Lymphopenia in the circulating blood is a characteristic feature of active tuberculosis (10, 12); it may be caused by local recruitment of CD4 T lymphocytes to the sites of infection, such as granulomas and pleural and ascitic exudates, where lymphocytes are abundant (11, 14). A normal peripheral lymphocyte count is rapidly restored when treatment is successful (12). In AIDS, in contrast, total CD4 T lymphocyte numbers are depleted due to human immunodeficiency virus-induced lymphocyte destruction and secondary to impaired lymphocyte production due to loss of the normal thymic-lymphoid architecture (7).

The patient’s mild diabetes mellitus is unlikely to have contributed much to her susceptibility to infection. This means that pulmonary infection with *M. celatum* occurred in an apparently immunocompetent host. The delay of 4 weeks until the correct diagnosis of a nontuberculous mycobacteriosis was made and treatment with antimicrobials to which the offending organism was resistant may have contributed to the fatal outcome.

This report of a pulmonary infection with *M. celatum* indicates that not only the known nontuberculous mycobacteria, *M. kansasii*, *M. avium*, and *M. scrofulaceum*, can cause infections in immunocompetent humans (1). An exact and rapid diagnosis with direct amplified tests, as described for *M. tuberculosis* (5), and advances in diagnostic technology may be crucial for successful treatment of a nontuberculous mycobacterial infection.

REFERENCES