Development of a Monoclonal Antibody to a Ureaplasma urealyticum Serotype 9 Antigen

ANNE NAESSENS,1* XIAOXING CHENG,1† SABINE LAUWERS,1 AND JANET A. ROBERTSON2

Department of Microbiology, Akademisch Ziekenhuis, Vrije Universiteit Brussel, 1090 Brussels, Belgium,1 and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6J 1Z9, Canada2

Received 4 August 1997/Returned for modification 10 October 1997/Accepted 23 December 1997

We produced a monoclonal antibody (MAb) to Ureaplasma urealyticum (strain Vancouver, progenitor of ATCC 33175), which reacts with all 14 serotypes and also, based on immunoblotting patterns, distinguishes between the two sero-clusters or biovars. Other MAbs have been described by Watson et al. (24); one reacted with all 14 serotypes, while another reacted with all serotypes except types 2 and 5.

We prepared MAbs against the U. urealyticum serotype 9 standard strain (strain Vancouver, progenitor of ATCC 33175) (6, 14), for which no serotype-specific antigens had been defined. MAbs were produced as previously described (4). Briefly, BALB/c mice were injected intraperitoneally every 2 weeks with 0.5 ml of antigen (washed whole cells, containing approximately 1010 color-changing units ml−1 of U. urealyticum serotype 9 reference strain). Freund’s complete adjuvant was added to the first injection; a final booster dose of 0.2 ml of the same antigen preparation was given through tail vein injection 3 days before fusion. Fusion was performed with spleen cells from immunized mice and nonsecreting P3-X63-Ag 8.653 mouse myeloma cells. The hybridoma clones were screened for the production of antibodies by colony epifluorescence (10), with the serotype 9 reference strain used as the antigen.

We note that the serotype 9 standard antigen used as the immunogen was from the same initial source as that used for preparing PAb-C (a set of PAbs produced in Canada) and PAb-B (a set of PAbs produced in Brussels, Belgium). After immunization with U. urealyticum serotype 9, one reactive clone, MAb 9-2H9, was identified by colony epifluorescence; it reacted with >90% of the colonies of the serotype 9 standard but not with the remaining 13 serotypes. When immunoblotting was performed (Fig. 1), MAb 9-2H9 reacted strongly with a single band of ~85 kDa with the serotype 9 standard strain but also weakly with a single band of ~100 kDa with the serotype 2 standard strain. It did not react with the other 12 standard strains. Thus, although this MAb was not completely specific for type 9, it should be useful for serotyping by colony epifluorescence.

MAb 9-2H9 was evaluated with seven clinical isolates. Earlier, in colony epifluorescence tests (20), these isolates had demonstrated reactivity with a serotype 9 polyclonal antiserum (16, 18) from PAb-C, the antiserum set prepared in Canada (15). The seven strains were now retested with PAb-B, the set

* Corresponding author. Mailing address: Department of Microbiology, Akademisch Ziekenhuis, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium. Phone: 32-02-4775000. Fax: 32-02-4775015. E-mail: labomicro@az.vub.ac.be.
† Present address: Dept. of Veterinary and Biomedical Science, University of Nebraska—Lincoln, Lincoln, NE 68583-0905.
of polyclonal antisera prepared in Belgium (12), and also with MAb 9-2H9 and MAbs to serotypes 1, 3, 4, 6, 7, and 14. DNA from these strains also was tested by 16S rRNA-based, biotin-specific PCRs (18). All results are shown in Table 1.

Of the seven isolates that the PAB-C reagent had recognized as bearing the serotype 9 determinant (as a single specificity or as one of multiple specificities), only four were recognized by PAB-B. The discrepancy between the two anti-serotype 9 antisera could reflect differences in the protocols used for the cultivation and preparation of the immunogen, immunization, or testing. Antibodies to the same antigen could be directed against different epitopes and thus elicit different test results.

Only one study has examined the reproducibility of serotyping clinical isolates of U. urealyticum with polyclonal antisera (21), and it was limited to a single laboratory using a single set of reagents. Reproducibility of each serotype specificity ranged from 100 down to 67%, with an overall agreement of 87%. The interpretation of data obtained by using such reagents can confuse rather than clarify the objective of the research, which in this instance was the role of strain variation in disease. The present study is the first to compare U. urealyticum serotyping results obtained by two laboratories using nonidentical immunoreagents.

Although clinical isolates commonly show polyreactivity with polyclonal antisera (21), polyreactivity clearly reduces the utility of serotyping (21). In epifluorescence tests with either the 13 heterologous serotype standard strains or with 28 sequential isolates (17 of which had been thrice subcloned by limiting dilutions [15] to ensure purity), the partial set of MAbs available to us did not exhibit any polyreactivity (Table 1).

The four strains that reacted with the serotype 9 reagent of both PAB-C and PAB-B also reacted with MAb 9-2H9. The other three strains that reacted with only PAB-C anti-serotype 9 antiserum demonstrated other specificities for which MAbs were not available (Table 1). When clinical isolates have been typed in Canada or in Belgium, with the full set of 14 specificities, the incidence of serotype 3 has predominated and the incidence of serotype 9 has been in the range of <1 to 15% (12, 16).

In conclusion, we have prepared a MAb to the serotype 9 determinant of U. urealyticum. Although this MAb is hetero-specific by immunoblotting, it appears to have utility as a reagent for serotyping by colony epifluorescence.

REFERENCES

18. Robertson, J. A., A. Vékris, C. Bébéar, and G. W. Stemke. 1993. PCR based upon 16S ribosomal RNA gene sequences distinguishes the two biovars of **TABLE 1. Results of colony epifluorescence tests on selected U. urealyticum strains by using PABS and MAbs**

<table>
<thead>
<tr>
<th>Strain</th>
<th>Serotype based on reactivity to PAB-C</th>
<th>Serotype based on reactivity to PAB-B</th>
<th>Biovar</th>
</tr>
</thead>
<tbody>
<tr>
<td>JR14</td>
<td>9</td>
<td>9</td>
<td>T960</td>
</tr>
<tr>
<td>SH</td>
<td>2</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>345</td>
<td>9</td>
<td>9</td>
<td>T960</td>
</tr>
<tr>
<td>RH 1627</td>
<td>9</td>
<td>9</td>
<td>T960</td>
</tr>
<tr>
<td>1070/77</td>
<td>9</td>
<td>8</td>
<td>T960</td>
</tr>
<tr>
<td>853/78</td>
<td>2</td>
<td>3</td>
<td>T960</td>
</tr>
<tr>
<td>RH 185</td>
<td>2</td>
<td>2</td>
<td>9</td>
</tr>
</tbody>
</table>

a Serotype determinants shown within parentheses gave a weaker reaction than the homologous serotype did.

b MAbs were available for the serotype-specific determinants 1, 3, 4, 6, 7, 9, and 14.

c Biovar determined on the isolate from a different tissue than that used for serotyping.

d NR, not reactive with these MAbs.

