Comparison of Broth Microdilution Method Using *Haemophilus* Test Medium and Agar Dilution Method for Susceptibility Testing of *Eikenella corrodens*

LUIS ALCALA, FERNANDO GARCÍA-GARROTE, EMILIA CERCENADO, TERESA PELÁEZ, GEMA RAMOS, AND EMILIO BOUZA

Servicio de Microbiología y Enfermedades Infecciosas, Hospital General Universitario “Gregorio Maraño,” Madrid, Spain

Received 8 December 1997/Returned for modification 26 March 1998/Accepted 29 April 1998

Susceptibility testing of *Eikenella corrodens* is usually performed by a Mueller-Hinton sheep blood agar dilution (AD) method. However, this method is impractical for testing only a few strains. We compared AD with the broth microdilution method using *Haemophilus* test medium (HTM) in order to determine the susceptibility of 36 clinical isolates of *E. corrodens* to eight antimicrobial agents. MICs obtained by the HTM method yielded 95.5 and 84% agreement (within 2 and 1 log₂ dilutions, respectively) with those obtained by AD. The HTM method with incubation in CO₂ for 48 h was highly reproducible and constitutes an easy alternative for antimicrobial susceptibility testing of *E. corrodens*.

Eikenella corrodens is a fastidious, slow-growing, gram-negative rod that has been increasingly recognized as a pathogen in a wide variety of infections (2, 12). Increased isolation of β-lactamase-producing strains and frequent resistance to many antimicrobial agents make necessary the routine determination of the susceptibility of this pathogenic bacterium to different antimicrobial agents (2, 3, 5, 6, 9, 10, 13, 14). Susceptibility testing has usually been performed by a sheep-blood-based agar dilution (AD) method which is tedious, time-consuming, and impractical for laboratories testing only a few strains (3). In this study we compare the AD method with a broth microdilution method using *Haemophilus* test medium (HTM) to determine the susceptibility of *E. corrodens* to eight frequently used antimicrobial agents.

(This study was presented in part at the 37th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, Ontario, Canada, 28 September to 1 October 1997.)

Thirty-six nonduplicate, recent clinical isolates of *E. corrodens* were tested. All strains were identified by standard microbiological methods (2, 7). The sources of the isolates were as follows: abscesses (n = 13); wounds (n = 9); blood (n = 4); peritoneal fluid (n = 4); tissue biopsy (n = 3); and pleural fluid, umbilical tissue, and whitlow (n = 1 each). β-Lactamase-producing strains were detected by the chromogenic cephalosporin test (nitrocefin) (Cefinase; BBL Microbiology Systems, Cockeysville, Md.). The isolates were maintained in 10% skim milk at −70°C until ready for use and then subcultured three times on 5% sheep blood Columbia agar plates for 48 h at 35°C in CO₂ before susceptibility studies were performed. These cultures were used for inoculum preparation. The following antimicrobial agents were used as powders of known potency: ampicillin, cephalothin, cefotaxime, and tetracycline, obtained from Sigma Chemical Co., St. Louis, Mo.; amoxicillin and clavulanic acid, obtained from SmithKline Beecham, Worthing, United Kingdom; cefoxitin and imipenem, obtained from Merck, Sharp and Dohme, Madrid, Spain; and ciprofloxacin, obtained from Bayer AG, Barcelona, Spain. All antimicrobial solutions were freshly prepared before use. AD MICs were determined by the standard procedure (3, 11) with Mueller-Hinton agar plates supplemented with 5% sheep blood incorporating twofold increments of the various antimicrobial agents, with concentrations ranging from 128 to 0.001 μg/ml depending on the antimicrobial agent being tested. Inocula consisting of 10⁴ CFU/ml/spot were applied to the surfaces of the plates with a Steers replicator. Control plates without antimicrobial agents were also inoculated before and after each series of antibiotic-containing plates. All plates were incubated at 35°C in 5% CO₂ for 48 h and then examined. *Staphylococcus aureus* ATCC 29213 and *Enterococcus faecalis* 29212 were used as control strains.

MICs were also determined by the broth microdilution method according to National Committee for Clinical Laboratory Standards guidelines (11) with HTM broth made in-house. Plastic microdilution trays contained the antimicrobial agents in serial twofold dilutions from 128 to 0.001 μg/ml, depending on the antimicrobial agent being tested. Inocula were prepared in HTM broth from cultures grown on Columbia agar with 5% sheep blood. The final concentration was 5 × 10⁵ CFU/ml. All microdilution trays were prepared in duplicate and incubated at 35°C; one series was incubated in air, and the other was incubated in 5% CO₂. Readings for both series were performed at 24 and 48 h. In order to assess reproducibility, 16 strains were tested in triplicate. Reproducibility was calculated as the percentage of MICs within a range of 3 log₂ dilutions. *Haemophilus influenzae* ATCC 49247 was used as a control strain.

The antimicrobial susceptibilities of *E. corrodens* as determined by AD and by broth microdilution under two different incubation conditions (air and CO₂) and with two different reading times (24 and 48 h) are shown in Table 1. HTM broth provided good support for the growth of all *E. corrodens* isolates, especially when the microtrays were incubated in CO₂ for 48 h (C48-HTM). Only two strains failed to grow in air after 24 h. Results obtained by both methods show that all strains were uniformly susceptible to amoxicillin-clavulanate, cephalothin, cefoxitin, cefotaxime, imipenem, tetracycline, and ciprofloxacin according to National Committee for Clinical Labo-
floxacin MICs tended to be 1 log₂ dilution higher. Imipenem C48-HTM than with AD; conversely, tetracycline and cipro-
by AD. Agreement was 84% within 1 log₂ dilution (Table 2).

E. corrodens antimicrobial agent used.

The AD technique is currently the method of choice for susceptibility testing of E. corrodens; however, it is tedious and
time-consuming and impractical for laboratories testing only a few strains. The broth microdilution method has become in-
creasingly popular, and many laboratories test susceptibility of most microorganisms by this technique (1). In 1983, Goldstein
et al. (4) described a broth microdilution technique with a
filtrate of laked sheep blood which compared favorably with
the AD method. However, the procedure was tedious, since it
required lysed sheep blood. HTM was developed in 1987 in
order to satisfy the complex growth requirements of Haem-
ophilus spp. (8). This medium also allows the growth of many
fastidious microorganisms; however, it has never been used for
antimicrobial susceptibility testing of E. corrodens. In our
study, the HTM broth microdilution method provided good
support for growth of E. corrodens strains and was easily in-
terpretable and highly reproducible. The MICs showed a high
correlation with those obtained by the AD technique, espe-
cially with C48-HTM. However, the HTM broth microdilution
method has not proved to be reliable for testing susceptibility
to imipenem and cefoxitin. Although the HTM broth used in
the present study was prepared in-house, this medium can be
purchased commercially. On the basis of our results and the
commercial availability of the HTM broth, we recommend the
HTM broth microdilution method for antimicrobial suscepti-
bility testing of E. corrodens.

TABLE 1. Comparative susceptibilities of 36 strains of E. corrodens to antimicrobial agents by the AD
and HTM broth microdilution methods

<table>
<thead>
<tr>
<th>Antimicrobial agent</th>
<th>AD Range</th>
<th>MIC₉₀</th>
<th>24 h, O₂</th>
<th>48 h, O₂</th>
<th>24 h, CO₂</th>
<th>C48-HTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>0.25–64</td>
<td>2</td>
<td>1</td>
<td>53</td>
<td>1</td>
<td>94</td>
</tr>
<tr>
<td>Amoxicillin-clavulanate</td>
<td>0.12–1</td>
<td>0.5</td>
<td>0.25</td>
<td>92</td>
<td>0.25</td>
<td>97</td>
</tr>
<tr>
<td>Cephalothin</td>
<td>25–16</td>
<td>16</td>
<td>8</td>
<td>94</td>
<td>25</td>
<td>83</td>
</tr>
<tr>
<td>Cefoxitin</td>
<td>0.25–4</td>
<td>2</td>
<td>0.25</td>
<td>59</td>
<td>0.5</td>
<td>64</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>0.006–0.06</td>
<td>0.03</td>
<td>0.006</td>
<td>65</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td>Imipenem</td>
<td>0.12–0.5</td>
<td>0.5</td>
<td>0.25</td>
<td>47</td>
<td>0.5</td>
<td>69</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>0.25–2</td>
<td>1</td>
<td>1</td>
<td>91</td>
<td>2</td>
<td>86</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>0.006–0.01</td>
<td>0.01</td>
<td>0.006</td>
<td>94</td>
<td>0.01</td>
<td>97</td>
</tr>
</tbody>
</table>

Overall: 74
goal is met by 86
Can be met by 89
Can be met by 94

* MIC₉₀, the MIC at which 90% of the isolates are inhibited, expressed in micrograms per milliliter.

** Two strains failed to grow in air after 24 h.

TABLE 2. Distribution in differences of MICs of antimicrobial
agents determined by AD and HTM broth microdilution
methods with C48-HTM

<table>
<thead>
<tr>
<th>Antimicrobial agent</th>
<th>% of isolates for which MICs differ by indicated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dilution(s) within 1 log₂ dilution</td>
</tr>
<tr>
<td></td>
<td>≤−3</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>8.3</td>
</tr>
<tr>
<td>Amoxicillin-clavulanate</td>
<td>2.8</td>
</tr>
<tr>
<td>Cephalothin</td>
<td>2.8</td>
</tr>
<tr>
<td>Cefoxitin</td>
<td>13.9</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>2.8</td>
</tr>
<tr>
<td>Imipenem</td>
<td>19.4</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>19.4</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>16.7</td>
</tr>
</tbody>
</table>

REFERENCES