Meningoencephalitis Associated with *Globicatella sanguinis* Infection in Lambs

ANA I. VELA,† ELENA FERNÁNDEZ,‡ ALFONSO LAS HERAS,† PAUL A. LAWSON,‡ LUCAS DOMÍNGUEZ,† MATTHEW D. COLLINS,§ AND JOSE F. FERNANDEZ-GARAYZABAL*‡

Departamento de Patología Animal I (Sanidad Animal), Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain, and Department of Food Science and Technology, University of Reading, Reading RG6 6AP, United Kingdom

Received 4 April 2000/Returned for modification 28 July 2000/Accepted 27 August 2000

Thirty lambs displayed symptoms of meningoencephalitis. An unusual gram-positive coccus was isolated in pure culture from the blood and brain samples from one of the affected animals, and phenotypic and phylogenetic characterization showed this to be *Globicatella sanguinis*. This is the first report of the isolation of *G. sanguinis* in pure culture from an animal infection.

*Globicatella sanguinis* was described in 1992 as a new genus and species of catalase-negative, facultatively anaerobic, gram-positive cocci (3). The organism has been recovered from a variety of human clinical specimens, including blood of bactereemic patients, urine of patients with urinary tract infections, cerebrospinal fluid of a patient with meningitis, and wounds (3, 10). Meningitis and meningoencephalitis are two of the most frequent pathologies affecting the central nervous system in domestic animals. A broad range of microorganisms are associated with these conditions in small ruminants (2), although *Listeria monocytogenes* is the pathogen most frequently implicated (13–15). In this paper, we describe an unusual outbreak of meningoencephalitis in lambs produced by *Globicatella sanguinis*. To our knowledge, this is the first report of the association of *G. sanguinis* with animal disease.

Case report. Thirty 8-month-old lambs out of a total of 156 lambs within a flock located in the province of Toledo, central region of Spain, developed neurological disorders characterized by depression, lack of appetite, ataxia, nystagmus, and restricted movement as the likely route of entry of these organisms into the central nervous system. Culture of the blood and brain yielded Gram-positive cocci, which was subsequently identified as *G. sanguinis*. To our knowledge, this is the first report of the association of *G. sanguinis* with animal disease.

Microbiology and identification. Samples of blood (obtained prior to the sacrifice) and brain of the necropsied lamb were taken for bacteriological examination. Blood was cultured according to conventional protocols (9) with Hemoline perfor-
sanguinis should be included in the list of possible etiological agents of disease showing neurological signs in small ruminants. It is pertinent to note that G. sanguinis is one of a plethora of gram-positive catalase-negative coccus-shaped taxa described from human and/or animal clinical sources in the last decade (e.g., Helcococcus [4, 6, 12], Facklamia [7], and Dolosigranulum [1]). Although the identification of G. sanguinis and other newly described organisms can be achieved by phenotypic tests, difficulties can often occur, and the use of molecular genetic tools such as 16S rRNA gene sequencing should be encouraged for the identification of such problematic veterinary organisms. This would greatly improve our knowledge of the host distribution, range of clinical conditions, and significance of these unusual gram-positive catalase-negative taxa.

This work has been funded by project AGF98-0829 from the Spanish Ministry of Education and Culture. E. Fernández and A. las Heras are recipients of a predoctoral grant from the Spanish Ministry of Education and Culture.

We thank María Castaño for assistance with the histologic aspects of this study.

REFERENCES