Peritonitis Due to *Brevibacterium otitidis* in a Patient Undergoing Continuous Ambulatory Peritoneal Dialysis

GEORGES WAUTERS,1* BERNARD VAN BOSTERHAUT, 2 VÉRONIQUE AVESANI,1 RENÉ CUVELIER,2 JACQUELINE CHARLLIER,1 MICHÈLE JANSENS,1 AND MICHEL DELMÉE1

Microbiology Unit, Faculty of Medicine, University of Louvain, B-1200 Brussels,1 and Centre Hospitalier de Mouscron, 7700 Mouscron,2 Belgium

Received 23 May 2000/Returned for modification 25 July 2000/Accepted 22 August 2000

Brevibacterium otitidis is a coryneform rod and, as far as is known, is isolated only from infected ears. We report the first known case of peritonitis caused by *B. otitidis* in a patient undergoing continuous ambulatory peritoneal dialysis.

CASE REPORT

A 73-year-old woman was started on continuous ambulatory peritoneal dialysis (CAPD) in May 1997 because of renal insufficiency due to nephrosclerosis. In November 1998, peritonitis with methicillin-resistant, coagulase-negative *Staphylococcus* sp. was diagnosed and treated with intraperitoneally administered vancomycin, resulting in clinical resolution within 48 h.

In September 1999, the patient complained of moderate abdominal pain, her temperature was 37.5°C, and the dialysate effluent was cloudy. The subcutaneous tunnel and the exit site of the CAPD catheter were unremarkable. The cell count of the effluent disclosed 160 white blood cells/mm³, of which 46% were polymorphonuclear neutrophils. Her peripheral leukocyte count was 6,870/mm³, and the C-reactive protein level was 2.0 mg/dl. Other results disclosed a state of relative malnutrition, with an albuminemia of 3.2 g/dl and a total cholesterol level of 144 mg/dl.

Empirical intraperitoneal therapy with cefazolin and gentamicin was initiated, and rapid clearing of the effluent resulted. On follow-up dialysate examination 5 days after institution of therapy, no significant numbers of leukocytes were seen. Subsequently, we clearly identified the cause of the infection as inadequate manipulation of the bag connector with a screwdriver.

Microbiological findings. The dialysate was cultured on blood agar plates, and 10 ml was inoculated into a blood culture bottle (BACTEC plus aerobic/F*). All cultures grew a gram-positive coryneform rod. Colonies were smooth and slightly yellowish. There was no growth at 20°C. The organism was nonmotile, catalase positive, and urease negative and did not acidify any carbohydrates. Gelatin and casein were hydrolyzed. Methane-thiol production was rapidly positive. Nitrate was not reduced. There was no hydrolysis of esculin, xanthine, or tyrosine. No carbohydrates were utilized as shown by the API 50 CH panel (bioMérieux, Marcy l’Étoile, France). Pyroridinyl peptidase was strongly positive, but α-glicosidase was negative. The numerical code achieved by the API Coryne strip (bioMérieux) was 6002004, corresponding to *Arthrobacter* spp. or *Brevibacterium* spp. The cellular fatty acids analyzed by gas-liquid chromatography (Delsi chromatograph, Intersmat, Brussels, Belgium) were predominantly of the branched type, with anteiso 15:0 and anteiso 17:0 accounting for more than 75% of the total. The diaminoc acid of the peptidoglycan was meso-diaminopimelic acid, as determined by N. Weiss at the German Collection of Microorganisms and Cell Cultures (Braunschweig, Germany).

The 16S rRNA gene sequence of the strain was studied using a set of primers for amplification. PCR products were purified from agarose gel by the QIAquick Gel Extraction kit (Qiagen, Westburg, The Netherlands). Analysis of the whole sequence was performed with an automatic DNA sequencer (Perkin-Elmer, Applied Biosystems, Foster City, Calif.) using the ABI Prism Big Dye Terminator Cycle Sequencing Ready Reaction kit. Each sequence was compared to the sequence data available in databases using BLAST (7). The 16S rRNA gene sequence of the strain exhibited 98.8% similarity to that of the type strain of *Brevibacterium otitidis*, DSM 107187.

The overall phenotypic findings and the chemotaxonomic characteristics of the strain were consistent with those of the genus *Brevibacterium* (3). The biochemical profile (Table 1) allowed us to assign it to the species *B. otitidis* (6). Although the 16S rRNA gene sequence similarity of 98.8% seems somewhat low, it is nevertheless compatible with isolates from the same species (8).

Susceptibility of the strain was tested by the disk diffusion method on Mueller-Hinton blood agar incubated at 37°C for 24 h. Paper disks (Becton Dickinson, Cockeysville, Md.) containing penicillin, ampicillin, cefotaxime, cephalothin, erythromycin, ciprofloxacin, gentamicin, and vancomycin were used, and the results were interpreted in accordance with the criteria established for staphylococci by the National Committee for Clinical Laboratory Standards in 1997 (5a). The isolate was susceptible to all of the antibiotics tested.

Discussion. Poor socioeconomic conditions and the low education level of the patient, resulting in inadequate manipulation of the bag connector, may explain the recurrent episodes of peritonitis during her CAPD treatment. Her relative malnutrition may have also contributed to the infection. Coryneform bacteria belonging to the genus *Brevibacterium* have been increasingly involved as opportunistic pathogens in various clinical, mostly nosocomial, settings (3). The vast majority of the isolates are *B. casei* (2). Brevibacteria have already been isolated in cases of CAPD peritonitis (4). Four strains
In addition, pyrrolidonyl peptidase is strongly positive in B. and negative in yellowish while those of B. mcbrellneri (6). However, colonies of brevibacteria are smooth and yellowish while those of B. mcbrellneri are dry and crumbly (5). In addition, pyrrolidonyl peptidase is strongly positive in B. otitidis and negative in B. mcbrellneri. The main differential characteristics of Brevibacterium species isolated from clinical specimens are reported in Table 1.

This observation emphasizes the need to identify coryneform bacteria more accurately for better assessment of their pathogenic role in opportunistic infections.

REFERENCES

Table 1. Differential characteristics of *Brevibacterium* species of human origin

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>B. casei</th>
<th>B. epidermidis</th>
<th>B. iodinium</th>
<th>B. otitidis</th>
<th>B. mcbrellneri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colony appearance</td>
<td>Smooth, white-grayish</td>
<td>Smooth, white-yellow</td>
<td>Smooth, grayish</td>
<td>Smooth, yellowish</td>
<td>Dry-friable, grayish</td>
</tr>
<tr>
<td>Growth at 20°C</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>α-Glucosidase</td>
<td>±</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Pyrrolidone peptidase</td>
<td>V</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Xanthine hydrolysis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Utilization of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Arabinose</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Maltitol</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Gluconate</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
</tbody>
</table>

a Data are from reference 6 and this study. +, positive; −, negative; V, variable.

b Most strains negative.

c Most strains positive.