Resistence of *Trichomonas vaginalis* to Metronidazole: Report of the First Three Cases from Finland and Optimization of In Vitro Susceptibility Testing under Various Oxygen Concentrations

TARU MERI,1* T. SAKARI JOKIRANTA,1 LAURI SUHONEN,2 AND SEppo MERI1

Department of Bacteriology and Immunology, Haartman Institute and HD Laboratories, University and University Central Hospital of Helsinki,1 and Department of Obstetrics and Gynecology, Peijas Hospital, Vantaa,2 Finland

Received 6 July 1999/Returned for modification 15 October 1999/Accepted 13 November 1999

*Corresponding author. Mailing address: Haartman Institute, P.O. Box 21, FIN-00029 University of Helsinki, Finland. Phone: 358-9-1912 6229. Fax: 358-9-1912 6382. E-mail: Taru.Meri@helsinki.fi.

Trichomonas vaginalis is a globally common sexually transmitted human parasite. Many strains of *T. vaginalis* from around the world have been described to be resistant to the current drug of choice, metronidazole. However, only a few cases of metronidazole resistance have been reported from Europe. The resistant strains cause prolonged infections which are difficult to treat. *T. vaginalis* infection also increases the risk for human immunodeficiency virus transmission. We present a practical method for determining the resistance of *T. vaginalis* to 5-nitroimidazoles. The suggested method was developed by determining the MICs and minimal lethal concentrations (MLCs) of metronidazole and ornidazole for *T. vaginalis* under various aerobic and anaerobic conditions. Using this assay we have found the first three metronidazole-resistant strains from Finland, although the origin of at least one of the strains seems to be Russia. Analysis of the patient-derived and previously characterized isolates showed that metronidazole-resistant strains were also resistant to ornidazole, and MLCs for all strains tested correlated well with the MICs. The suggested MICs of metronidazole for differentiation of sensitive and resistant isolates are >75 µg/ml in an aerobic 24-h assay and >15 µg/ml in an anaerobic 48-h assay.
three clinically metronidazole-resistant and in vitro metronida-
zole-resistant strains of *T. vaginalis* from Finland. The suscep-
tibility to metronidazole was tested under various oxygen con-
centrations. The susceptibilities of the characterized strains of
T. vaginalis to metronidazole and ornidazole were compared to
those of a set of patient-derived strains.

MATERIALS AND METHODS

Reagents. Metronidazole and ornidazole were purchased from Sigma-Chemical Co. (St. Louis, Mo.) and were dissolved in 0.15 M phosphate buffer (pH 6.4) for 10 days before use. Dimethyl sulfoxide (DMSO) was purchased from Merck & Co. (Darmstadt, Germany).

T. vaginalis strains and cultivation. *T. vaginalis* strains were cultured in 7-ml Wassermann glass tubes containing 5 ml of Tripticyase-yeast extract-maltose (TYM) medium (4) complemented with 10% heat-inactivated horse serum and a combination of 100 IU of streptomycin (Sigma) per ml and penicillin (Orion Diagnostica, Espoo, Finland).

The characterized metronidazole-resistant (28) and -sensitive (29) strains of *T. vaginalis* were obtained from the American Type Culture Collection (ATCC: ATCC 50143 and ATCC 50148, respectively) and were treated as described below for the patient-derived isolates.

Patient-derived strains of *T. vaginalis* were obtained from female Finnish patients. The vaginal samples were originally plated into Vagi-cult tubes (Orion Diagnostica), which have been developed for the diagnostic cultivation of *T. vaginalis* and yeast. To continue the culture an aliquot of 0.5 ml was taken from each positive culture and was transferred to TYM medium. Aliquots of the culture suspensions containing live *T. vaginalis* trophozoites (0.2 to 1.0 ml) were trans- ferred to the bottoms of prewarmed new culture tubes three times a week. After 1 to 2 weeks aliquots of each strain were frozen (−70°C) with DMSO by a

Effect of oxygen on drug tolerance. The *T. vaginalis* trophozoites after 5 and 10 days of cultivation.

The expression of oxidative stress-related proteins in the trophozoites of the metronidazole-resistant strain 1 were approximately 20 times higher than those for the known sensitive strain 1, the known sensitive strain (strain S), and clinically sensitive isolates (strains 4 to 10) of *T. vaginalis* in the presence of different concentrations of metronidazole. Parasite motility was evaluated microscopically after 24 and 48 h. At the 24-h time point the MIC of metronidazole was 145 µg/ml for the known resistant strain (strain R), 23 µg/ml for clinically resistant strain 1, over 250 µg/ml for clinically resistant strains 2 and 3, 20 µg/ml for the known sensitive strain (strain S), and from 8.5 to 12 µg/ml for clinically sensitive strains 4 to 10. At the 48-h time point the MICs were 39 µg/ml (strain R), 16 µg/ml (strain I), 24 µg/ml (strain 2), 36 µg/ml (strain 3), and from 1.0 to 9.8 µg/ml (strains 4 to 10) (Fig. 1A).

RESULTS

Anaerobic MICs of metronidazole. The MICs of two 5-ni- troimidazoles (metronidazole and ornidazole) for the different *T. vaginalis* strains were obtained under both aerobic and anaerobic conditions. The MICs of metronidazole were also determined under various oxygen concentrations. The MICs for clinically resistant isolates (strains 1 to 3), the known sensitive isolate (strain S), and clinically sensitive isolates (strains 4 to 10) of *T. vaginalis* was amplified with primers TVK3 and TVK4, which have been de-

5-Nitroimidazole susceptibility assays. To examine the susceptibilities of the *T. vaginalis* strains to metronidazole and ornidazole under aerobic and anaerobic conditions, the trophozoites were cultured on 24-well tissue culture plates (Greiner, Gloucestershire, United Kingdom) in airtight jars with adjustable ventilation and adjustable atmosphere. The trophozoites were cultured on 24-well tissue culture plates with blood or chocolate agar (CO2 atmosphere) or fastid-

Aerobic MICs. In the first aerobic assay the sensitivity of *T. vaginalis* to metronidazole was tested under ordinary air conditions at 37°C. The MICs of metronidazole at the 24-h time point were 135 µg/ml for the known resistant strain (strain R), 77 µg/ml for clinically resistant strain 1, over 250 µg/ml for strains 2 and 3, 18 µg/ml for the known sensitive strain (strain S), and from 3.5 to 10 µg/ml for strains 4 to 10. After 48 h of cultivation the MICs were 8.4 µg/ml (strain R), 7.8 µg/ml (strain 1), 48 µg/ml (strain 2), 140 µg/ml (strain 3), 1.0 µg/ml (strain S), and from 1.0 to 2.0 µg/ml (strains 4 to 10) (Fig. 1B).

As the results of anaerobic and aerobic resistance for some strains, especially clinically resistant isolate 1, differed, a sec-

Determination of MICs and MLCs. The viabilities of the trophozoites in the culture plate wells were assessed by examining visually the motilities of the cells with an inverted microscope at a ×400 magnification after 24 and 48 h of incubation. The MIC was the lowest concentration of the drug in the well in which no motile cells were detected. To check whether the evaluation of viability (MIC) reflected the effectiveness of the drug at actually killing the cells, the minimal lethal concentrations (MLCs) were also tested after cultivation of the trophozoites in the presence of different oxygen concentrations. The contents of each of the wells were inoculated into the bottoms of tubes containing 5 ml of fresh TYM medium, and the tubes were examined for the presence of motile *T. vaginalis* trophozoites after 5 and 10 days of cultivation.

Clinical data. The first (strain 1) and second (strain 2) clinically metronida-
zole-resistant isolates of *T. vaginalis* were obtained from female patients living in the Helsinki district in Finland. The third strain (3) was from a female patient who is from the eastern part of Finland and whose husband had often visited Russia. All patients suffered from recurrent trichomonal infections and were treated with several courses (6, 3, and 10 courses for patients 1, 2, and 3, respectively) of metronidazole with a standard or an increased dose. All three patients were hospitalized and were treated with metronidazole intravenously (patient 1 with 1 g a day for 3 days, patient 2 with 500 mg four times a day for 7 days co-treated with use of 100 g of metronidazole vaginally once a day for 10 days, and patient 3 with 750 mg three times a day for 5 days). After the treatment patients were symptomless for a follow-up period of 3 months, and the cultures of their samples were also negative for *T. vaginalis*.
after 24 h were 133 μg/ml for strain R, 37 μg/ml for strain 1, 2.0 μg/ml for strain S, and from 4.0 to 8.0 μg/ml for strains 4 to 7. After 48 h of cultivation the MICs of ornidazole were 8.4 μg/ml (strain R), 17 μg/ml (strain 1), 2.0 μg/ml (strain S), and from 4.0 to 8.0 μg/ml (strains 4 to 7) (Fig. 3A). In the aerobic assay the MICs were 200 μg/ml (strain R), 78 μg/ml (strain 1), 2.0 μg/ml (strain S), and from 2.0 to 4.0 μg/ml (strains 4 to 7) after 24 h of cultivation and 10 μg/ml (strain R), 18 μg/ml (strain 1), 1.0 μg/ml (strain S), and from 1.0 to 2.0 μg/ml (strains 4 to 7) after 48 h of cultivation (Fig. 3B).

MLCs of metronidazole. The MLCs were measured from the second aerobic sensitivity assay. While the MIC was determined by microscopic evaluation on the basis of cell motility at different drug concentrations, the MLC was assayed to reveal the actual lethal concentration on the basis of the growth after 5 and 10 days in fresh medium after exposure to different concentrations of the drug. When no oxygen was present the MLC for strains 1 and R was 6.0 μg/ml and the MLC for the clinically sensitive strains (strains S, 6, and 7) was 0.75 μg/ml (Table 1). The MLCs varied from 6 to 100% of the corresponding MICs. When the concentration of oxygen was ≥10% the sensitive strains died even in the absence of the drug.

DISCUSSION

In the present study we have tested different in vitro conditions for determination of the 5-nitroimidazole resistance of *T. vaginalis* and suggest a relatively simple and easily interpretable method for laboratory testing of strains suspected of being metronidazole resistant. We describe the analysis of the first three metronidazole-resistant *T. vaginalis* strains, all of which were finally eradicated by intravenous metronidazole therapy.

Testing of drug susceptibility in vitro is necessary to ensure that the long-lasting *T. vaginalis* infection is really caused by a nonsensitive strain and that the patient is not experiencing a recurrent infection. We tested the susceptibilities of different resistant and sensitive strains of *T. vaginalis* under various conditions and at various time points. As a conclusion, we suggest that a combination of an aerobic 24-h cultivation and an anaerobic 48-h cultivation of patient-derived strains in the presence of different concentrations of metronidazole can be used to determine whether their susceptibilities to metronidazole are decreased. One of the patient-derived resistant strains (strain 1) described in this report was concluded to be a resistant isolate only from the aerobic assay. Anaerobic 24-h MICs were only slightly elevated for clinically resistant strain 1 and
TABLE 1. Effect of oxygen on MLCs of metronidazole for five strains of T. vaginalis after 48 h of incubation in the presence of different oxygen concentrations in the atmosphere

<table>
<thead>
<tr>
<th>% O₂</th>
<th>Strain R MLC (µg/ml)</th>
<th>MLC/MIC (%)</th>
<th>Strain S MLC (µg/ml)</th>
<th>MLC/MIC (%)</th>
<th>Strain 1<sup>a</sup> MLC (µg/ml)</th>
<th>MLC/MIC (%)</th>
<th>Strain 6<sup>b</sup> MLC (µg/ml)</th>
<th>MLC/MIC (%)</th>
<th>Strain 7<sup>c</sup> MLC (µg/ml)</th>
<th>MLC/MIC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.0</td>
<td>100</td>
<td>0.75</td>
<td>100</td>
<td>6.0</td>
<td>50</td>
<td>0.75</td>
<td>100</td>
<td>0.75</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>33</td>
<td>1.5</td>
<td>50</td>
<td>48</td>
<td>50</td>
<td><0.75</td>
<td>12</td>
<td>1.5</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>24.0</td>
<td>16</td>
<td>1.5</td>
<td>50</td>
<td>48</td>
<td>50</td>
<td><0.75</td>
<td>16</td>
<td>1.5</td>
<td>66</td>
</tr>
<tr>
<td>10</td>
<td>48.0</td>
<td>6</td>
<td>C<sup>−</sup></td>
<td>48</td>
<td>25</td>
<td>C<sup>−</sup></td>
<td><0.75</td>
<td>16</td>
<td>1.5</td>
<td>66</td>
</tr>
<tr>
<td>20</td>
<td>48.0</td>
<td>6</td>
<td>C<sup>−</sup></td>
<td>48</td>
<td>33</td>
<td>C<sup>−</sup></td>
<td>C<sup>−</sup></td>
<td>1.75</td>
<td>77</td>
<td>C<sup>−</sup></td>
</tr>
<tr>
<td>30</td>
<td>48.0</td>
<td>6</td>
<td>C<sup>−</sup></td>
<td>24</td>
<td>12</td>
<td>C<sup>−</sup></td>
<td>C<sup>−</sup></td>
<td>1.75</td>
<td>77</td>
<td>C<sup>−</sup></td>
</tr>
</tbody>
</table>

^a Treatment-resistant patient-derived strain of T. vaginalis.
^b Treatment-sensitive patient-derived strains of T. vaginalis.
^c C[−], culture cells incubated without metronidazole died.

differed from those for the drug-susceptible control (strain S) only by 3 µg/ml.

Aerobic resistance has also been induced in vitro, and these strains were also drug sensitive under anaerobic conditions (38). Thus, both assays are needed in the laboratory analysis (5). A suitable anaerobic susceptibility testing protocol for diagnostics (InPouchTV test) is commercially available (1), but it should be complemented by an aerobic assay.

Interpretation of the MICs or MLCs for T. vaginalis has not been based on any widely accepted scheme. Some investigators have used a method in which the MIC is the lowest concentration of drug at which cell growth takes place and the MLC is the lowest concentration with motile cells. Both definitions are based on visual observation after a 48-h cultivation (23, 25, 28, 29, 38). In some studies the MLC is the original lowest drug concentration at which growth of the parasites in a drug-free medium no longer takes place (1, 12, 19). According to Narcici and Secor (30), the MIC of metronidazole was approximately fourfold higher than the concentration (MLC) that killed the isolates, but no data were presented. It seems that in the MIC assay the trophozoites had suffered irreversible damage but still retained motility. Narcici and Secor (30) used a 48-h cultivation for the determination of possible growth in drug-free medium. However, for some isolates it may take longer to recover from the effect of the drug because we found viable trophozoites after 5 days of cultivation. According to the present study the MIC for T. vaginalis is a suitable indicator of the actual MLC and can be used for diagnostic assessments.

Different threshold concentrations of the 5-nitroimidazole drugs for resistance have been proposed by many investigators. Müller et al. (28) have reported MLCs for 199 T. vaginalis strains and the treatment outcomes for the corresponding patients. According to their interpretation, the MLCs for a treatment-resistant strain were >100 µg/ml in an aerobic assay and >5.1 µg/ml in an anaerobic assay. They also found that treatment success overlapped between susceptible and resistant isolates. We found that following an aerobic 24-h cultivation and an anaerobic 48-h cultivation the MICs for clinically resistant isolates were >75 and >15 µg/ml, respectively. For clinically sensitive strains MLCs were considerably lower in both assays (<19 and <10 µg/ml, respectively), and these values did not overlap with the values for the resistant strains. Many different methods are used in laboratories to test for drug susceptibility, and it is not possible to define accurate threshold values for resistant and sensitive strains. There is also uncertainty whether the MIC or MLC can be used as such to determine the suitable drug dosage for the patient (23, 34). We suggest that a patient-derived strain is judged to be resistant after comparing it to a known, highly resistant strain by an easily interpretable method.

In this study we found three patient samples with T. vaginalis strains that were clearly resistant to metronidazole in vitro. The finding correlated well with the clinical data for resistance to treatment. In earlier reports patients who carry resistant strains of T. vaginalis have usually been treated with longer courses of standard doses of metronidazole or with a considerably higher dosage (23). All patients described in this paper were initially treated with several courses of metronidazole per os. Finally, trichomonads were eradicated by using metronidazole intravenously. Some reports have suggested that other 5-nitroimidazoles, like tinidazole, ornidazole (19), or furazolidone (30), are curative for metronidazole-resistant isolates, and some reports have shown the opposite (7). However, oral metronidazole as a single dose of 1.5 g is still the drug of choice for the treatment of trichomoniasis (37), and the susceptibility assay is indicated only when the standard metronidazole dosage is repeatedly incapable of eradicating the infection from the patient and the partner(s). When the MIC for a patient-derived strain is high by a reliable assay, we suggest that the patient be treated with as high a dosage of the drug as possible to treat the infection and to prevent it from spreading.

The origins of our first two treatment-resistant T. vaginalis strains (strains 1 and 2) are not exactly known. The third strain (strain 3) came from a patient in the eastern part of Finland and is likely to have originated from a partner who had visited Russia several times. Tourism between Western Europe and Russia has increased a lot, and part of it is sex tourism in and out of Russia. No statistical data from Russia on how common T. vaginalis infections are and the current status of drug resistance in Russia are available. In Russia self-treatment with the usual doses of metronidazole is possible; thus, the time lag between a new diagnosis and effective treatment is increased. In Europe it is very important to start diagnosing possible resistance in vitro after, for example, 2 months of “recurrent” infections, to report the resistant strains, and to trace the sexual contacts, if possible. Recent epidemiological and in vitro evidence suggests that T. vaginalis infection may enhance the risk of HIV-1 transmission (36). If this connection is confirmed, T. vaginalis susceptibility testing becomes even more important in countries where infections are both frequent and inadequately controlled, for example, in Russia and tropical Africa. Patients infected with a resistant strain of T. vaginalis should be tested for HIV infection.

In summary, using metronidazole sensitivity testing under various oxygen concentrations, we found the first three metronidazole-resistant strains of T. vaginalis from Finland. It appears that the metronidazole resistance of T. vaginalis is an emerging threat in Europe. Thus, testing for metronidazole susceptibility in vitro and introduction of rapid and intense medication should be implemented more often. The in vitro
diagnostic assays that we suggest can be relatively simply adopted for use in advanced clinical microbiology laboratories.

ACKNOWLEDGMENTS

We thank all the involved hospitals for providing us with *T. vaginalis* strains and Susi-Sirkku Kaukoranta-Tolvainen, Esa Korkecela, and Satu Suahonen for valuable clinical data on the patients. This study was supported by a state subsidy to the Helsinki University Central Hospital.

REFERENCES