
JOSEPH BARAN, JR.,* ENID KLAUBER, JEFFREY BARCZAK, KATHLEEN RIEDERER, AND RIAD KHATIB

Department of Medicine, Division of Infectious Diseases, St. John Hospital and Medical Center, Detroit, Michigan

Received 12 July 1999/Returned for modification 2 October 1999/Accepted 1 December 1999

Antifungal susceptibilities were determined from 80 urinary isolates of Candida species collected in 1994 and 1998. Our findings demonstrate increasing geometric means of fluconazole MICs and fluconazole resistance in Candida albicans and Candida tropicalis (those for Candida glabrata were unchanged) within the 4-year span. Amphotericin B and voriconazole MICs remained constant.

Susceptibility testing was performed by broth microdilution by utilizing the National Committee for Clinical Laboratory Standards M27-A method (8). A minimum of five colonies were suspended in 0.9% saline and adjusted to an 0.5 McFarland standard (corresponds to 1 × 10^8 to 5 × 10^8 CFU/ml) by using a Vitek colorimeter (bioMérieux, Vitek Inc.). This stock solution was diluted 1:50 in RPMI 1640 medium and then 1:20 to obtain a 2 × test concentration. One hundred microliters of the 2 × inoculum was pipetted to prepare antifungal dilutions in microwells to achieve a final concentration of 0.5 × 10^3 to 2.5 × 10^5 CFU/ml in a final test volume of 200 µl. Microwell plates were incubated at 35°C for 48 ± 2 h (mean ± standard deviation). The MIC was calculated by two independent observers as the lowest drug concentration with no growth for amphotericin B and an 80% reduction in growth for fluconazole and voriconazole (6, 9). All tests and controls were performed in duplicate. Final inoculum size was confirmed by subculture and colony count.

We studied 80 isolates of Candida species: C. albicans (n = 51), C. tropicalis (n = 11), and C. glabrata (n = 18). In 1994, 96% of C. albicans and all C. tropicalis isolates were susceptible to fluconazole. In 1998, fluconazole resistance was noted in 2 of 30 (6.7%) C. albicans isolates (MIC ≥ 64 µg/ml) and in 1 of 4 (25%) C. tropicalis isolates (MIC > 64 µg/ml); dose-dependent susceptibility (MIC = 16 to 32 µg/ml) was not observed. The MIC at which 50% of the isolates are inhibited (MIC₅₀) and geometric mean analysis for these two species increased two- to threefold during this time period (Table 1). Resistance and/or dose-dependent susceptibility was more prevalent among C. glabrata isolates, but the rate did not change.

Amphotericin B and voriconazole MICs remained constant. There was a significant correlation between fluconazole and voriconazole MICs (r² = 0.54; P = 0.01) but not with amphotericin B MICs.

The MICs of fluconazole and amphotericin B for all control strains were in the expected susceptibility range.

The epidemiology of Candida infections appears to be changing, with increasing prevalence of non-C. albicans species and the development of triazole resistance in ordinarily susceptible species (10, 11). The resistance has been reported most frequently for C. albicans oropharyngeal isolates from patients with advanced AIDS (11). Our findings show a trend towards increasing fluconazole MICs among C. albicans and C. tropicalis and a higher rate of fluconazole resistance over a 4-year period. In comparison, resistance among C. glabrata isolates was much more common but had already reached a steady state in 1994 and did not increase any further in 1998.

* Corresponding author. Mailing address: Medical Education Department, St. John Hospital & Medical Center, 22101 Moross Rd., Detroit, MI 48236. Phone: (313) 343-7837. Fax: (313) 343-7840.
These findings are not surprising because fluconazole resistance and/or dose-dependent susceptibility probably emerged in C. glabrata well before 1994 and remained relatively constant. The MICs of voriconazole were low for all isolates tested. This finding most likely represents the extended potency of this newer antifungal agent as well as its limited use outside of clinical trials. However, although voriconazole remained highly effective against fluconazole-resistant strains, there was a significant correlation between voriconazole and fluconazole MICs. Whether this drug will remain effective against fluconazole-resistant strains after widespread use remains to be determined.

Amphotericin B MICs remained constant for all three species, and amphotericin resistance remained exceedingly rare. We did not observe any correlation between fluconazole and amphotericin B MICs.

The reasons for this trend in antifungal susceptibilities are unclear. The mechanisms of fluconazole resistance appear to be stepwise microevolutionary changes that occur during treatment (5). Whether our patients with higher MICs had received antifungal therapy in the past or these changes took place in response to selective pressure from widespread use of antifungal agents in the community is uncertain.

Although we studied only urine isolates, we suspect that similar trends may also be present in isolates from other sites. The clinical significance of these findings is unclear at this point since most of the MICs remain within the susceptibility range. Nevertheless, this trend is worrisome and requires close monitoring and better control of the use of antifungal agents.

This work was supported by the Graduate Medical Education Research Committee, St. John Health System, Detroit, Mich.

REFERENCES

