First Report of Methicillin-Resistant Staphylococcus aureus with Reduced Susceptibility to Vancomycin in Thailand

SUWANNA TRAKULSOMBOON, SOMWANG DANCHAIVIJITR, YONG RONGRUNGRUANG, CHERTSAK DHIRAPUTRA, WATTANACHAI SUESAEMGRAT, TERUYO ITO, AND KEIICHI HIRAMATSU

Department of Medicine and Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, and Department of Medicine, Khon Kaen Hospital, Khon Kaen, Thailand and Department of Bacteriology, Faculty of Medicine, Juntendo University, Tokyo, Japan

Received 10 July 2000/Returned for modification 2 October 2000/Accepted 27 November 2000

To investigate whether there are methicillin-resistant Staphylococcus aureus (MRSA) strains with reduced susceptibility to vancomycin in Thailand, a total of 155 MRSA strains isolated from patients hospitalized between 1988 and 1999 in university hospitals in Thailand were tested for glycopeptide susceptibility. All the strains were classified as susceptible to vancomycin and teicoplanin when judged by NCCLS criteria for glycopeptide susceptibility using the agar dilution MIC determination. Vancomycin MICs at which 50 and 90% of the isolates tested were inhibited (MIC50 and MIC90, respectively) were 0.5 and 1 µg/ml, respectively, with a range of 0.25 to 2 µg/ml. For teicoplanin, MIC50 and MIC90 were 2 µg/ml, with a range of 0.5 to 4 µg/ml. However, one-point population analysis identified three MRSA strains, MR135, MR187, and MR209, which contained subpopulations of cells that could grow in 4 µg of vancomycin per ml. The proportions of the subpopulations were 2 × 10⁻⁴, 1.5 × 10⁻⁶, and 4 × 10⁻⁷, respectively. The subsequent performance of a complete population analysis and testing for the emergence of mutants with reduced susceptibility to vancomycin (MIC ≥ 8 µg/ml) confirmed that these strains were heterogeneously resistant to vancomycin. Two of these strains caused infection that was refractory to vancomycin therapy. Pulsed-field gel electrophoresis showed that the two strains had identical SmaI macrorestriction patterns and that they were one of the common types of MRSA isolated in the hospital. This is the first report of heterogenous resistance to vancomycin in Thailand and an early warning for the possible emergence of vancomycin resistance in S. aureus in Southeast Asia.

Vancomycin is a useful antibiotic against gram-positive pathogens. However, with an increased use of the antibiotic, resistance has been noticed in various species of bacteria such as enterococci (18, 19), Staphylococcus haemolyticus (27), and Staphylococcus epidermidis (9). In 1996, the first Staphylococcus aureus strain with reduced susceptibility to vancomycin, designated VRSA for vancomycin-resistant S. aureus (13) or GISA for glycopeptide-intermediate S. aureus (26), was isolated from a Japanese patient who contracted vancomycin-refractory surgical incision site infection (4). Subsequently, a total of five similar strains were reported from the United States (5, 6), France (23), and Korea (16). The vancomycin MIC for these strains is 8 µg/ml. Vancomycin therapy was unsuccessful with all of these infected patients. The emergence and spread of such resistant strains are expected to raise the morbidity and mortality rates of nosocomial infection significantly. Fortunately, so far only a few isolates have been reported in the world. However, the putative precursor strains for vancomycin resistance, designated hetero-VRSA (13) or hetero-VISA for heterogeneously vancomycin-intermediate S. aureus (7), are reported to be disseminated not only in Japan but also in various other countries in the world (2, 10, 11, 13, 15, 17, 24, 29; Z. Gulay, T. Atay, M. Kucukguven, and N. Yulug, Abstr. 38th Intersci. Conf. Antimicrob. Agents Chemother., abstr. C-136, 1998). Heterogeneously resistant (heteroresistant) strains spontaneously generate mutants with reduced susceptibilities to vancomycin at a frequency of 1 in 1 million or more (13). In this study, the status of the glycopeptide susceptibility of Thai methicillin-resistant S. aureus (MRSA) strains was analyzed as the initiation step of an annual surveillance program for the emergence of glycopeptide resistance in Thai S. aureus clinical isolates.

CASE REPORT

Three hetero-VRSA strains (MR135, MR187, and MR209) were isolated from the following clinical patients. The first two patients were hospitalized in the same urban hospital in Bangkok but in different wards at different periods of time. The third patient was admitted to the medical ward of a regional hospital of Thailand. These two hospitals were separated from each other by about 600 km.

Case 1 (strain MR135). The case 1 patient was a 68-year-old woman who was a resident of Bangkok. She had diabetes and developed a long-term surgical-site MRSA infection at her knee after her second total knee replacement operation in March 1998. The patient was continuously treated with vancomycin from 14 May to 27 July (75 days) and with teicoplanin for 7 days from 29 July to 4 August 1998. However, MRSA was repeatedly isolated from synovial fluid in her knee seven times during the time period from 6 May to 31 July. MR135 was
isolated from the synovial fluid taken on the third day of teicoplanin therapy (31 July 1998). The patient became febrile and developed a purulent discharge from the surgical site at her knee. The patient expired on 7 August 1998.

**Case 2 (strain MR187).** The case 2 patient was a 16-year-old woman who resided in Bangkok. From 13 May to 9 September in 1996, the patient had chronic retroperitoneal infection with MRSA. Multiple MRSA strains were isolated from various body sites before vancomycin treatment was given: they were isolated from her sputum on 2 June with *Pseudomonas aeruginosa*, from a blood specimen on 5 June, and from an exploration biopsy sample from her abdomen on 14 June. The patient subsequently received long-term treatment with vancomycin (for 49 days, from 21 June to 9 August). However, MRSA was repeatedly isolated from the drainage of her intra-abdominal abscess during the course of vancomycin therapy. MR187 was isolated on 4 July (14 days after the initiation of vancomycin therapy). Vancomycin treatment was discontinued, and laparoscopic-assisted surgical excisions of the intra-abdominal abscess with removal of necrotic tissue and drainage of pus were performed several times in August. The drainage fluid from her abdomen became sterile on 6 September, and the recovered patient was discharged from the hospital.

**Case 3 (strain MR209).** MR209 was isolated on 17 June 1999 from the sputum of a 61-year-old man in Khon Kaen, in the northern part of Thailand, who developed nosocomial pneumonia with *Acinetobacter sp.*, *Klebsiella pneumoniae*, and MRSA. The patient had diabetes mellitus, liver cirrhosis, hepatic encephalopathy, and cerebral infarction as underlying diseases. He was treated with cefotaxime for 5 days from 17 to 21 June but was not treated with any glycopeptide antibiotic. His condition deteriorated, and he died at home shortly after he was discharged from the hospital.

**MATERIALS AND METHODS**

Bacterial strains and antibiotics. *S. aureus* strains for which the oxacillin MIC was 4 µg/ml or above were defined as MRSA according to the National Committee for Clinical Laboratory Standards (NCCLS) (20). A total of 155 MRSA strains isolated from the patients hospitalized between 1988 and 1999, including the three strains MR135, MR187, and MR209, were analyzed: 148 strains, including MR135 and MR187, were from the urban university hospital, and 7 strains, including MR209, were from the regional hospital. They were isolated from the respiratory tract (85 strains), pus or exudative fluids (62 strains), blood (6 strains), and urine (2 strains).

Nine of the vancomycin-susceptible MRSA strains were subjected to pulsed-field gel electrophoresis (PFGE) genotyping together with the three vancomycin-heteroresistant strains (MR135, MR187, and MR209) and nine related vancomycin-susceptible MRSA strains. Population analysis was performed with both vancomycin and teicoplanin.

**RESULTS**

**Glycopeptide susceptibility of Thai strains.** Based on the NCCLS criteria and routine clinical laboratory testing, all the isolates were judged to be susceptible to vancomycin (MIC ≤ 4 µg/ml) and teicoplanin (MIC ≤ 8 µg/ml). Vancomycin MICs at which 50% and 90% of the isolates were inhibited (MIC50 and MIC90, respectively) were 0.5 and 1 µg/ml, respectively, with a range of 0.25 to 2 µg/ml. The teicoplanin MIC50 and MIC90 were both 2 µg/ml, with a range of 0.5 to 4 µg/ml.

**Analysis of glycopeptide-resistant subpopulations of the three MRSA strains.** With an inoculum size of 10^7 CFU, one strain, MR135, exhibited confluent growth of cells on BHI agar containing 4 µg of vancomycin per ml within 24 h. Two other strains, MR187 and MR209, showed positive growth on the screening agar plate within 48 h, with formation of 15 and 4 colonies, respectively. All three strains had glycopeptide MICs in the susceptible range: a vancomycin MIC of 1 µg/ml for all the strains and teicoplanin MICs of 2 µg/ml for MR135, 1 µg/ml for MR187, and 4 µg/ml for MR209, respectively. Figure 1 illustrates the population analysis curves of MR135, MR187, and MR209 in comparison with those of Mu3, Mu50, MB126 (one of the glycopeptide-susceptible Thai strains), and *S. aureus* type strain FDA209A: Figure 1A shows population curves for resistance to vancomycin. The sizes of the subpopulations of the three Thai strains that were resistant to 2 to 5 µg of vancomycin per ml were smaller than those of Mu50 and were comparable to those of Mu3. Strain MR135 had greater resistant subpopulations than Mu3 to 2 to 5 µg of vancomycin per ml (Fig. 1A). MR187 and MR209 were more susceptible to vancomycin than Mu3, but both isolates also contained resistant subpopulations of cells that could grow in the presence of 4 and 5 µg of vancomycin per ml. All three Thai strains had smaller sizes of subpopulations resistant to 6 to 9 µg of vancomycin ml than those of Mu3.
A resistant-mutant emergence test was performed with strains MR135, MR187, and MR209 by the following procedure. One of the colonies of each strain grown on the BHI agar plate containing 4 mg of vancomycin per ml was picked and subjected to colony purification to get rid of contaminated vancomycin-susceptible but nondead cells, as follows. The picked colony was streaked onto a fresh BHI agar plate without vancomycin, and one of the formed colonies was picked again to establish it as the one-step resistant mutant of the strain. The mutant strain thus established was cultivated overnight without antibiotic and subjected to MIC determination. Mutants for which the vancomycin MIC was 8 mg/ml were obtained from all three strains by this one-step selection procedure.

FIG. 1. Analysis of resistant subpopulations of Thai MRSA strains to vancomycin (A) and teicoplanin (B). Three Thai strains, MR135, MR187, and MR209, contained subpopulations resistant to 4 to 6 μg of vancomycin per ml (A) and 8 μg of teicoplanin per ml (B), in contrast to Thai strain MR126 and S. aureus type strain FDA209P. When compared to Japanese strain Mu3, Thai strains did not contain subpopulations resistant to 7 to 9 μg of vancomycin per ml but MR135 had larger sizes of subpopulations resistant to 2 to 5 μg of vancomycin per ml. Mu50 is a Japanese MRSA strain for which the vancomycin MIC is 8 μg/ml.
it was noticed that it had a pattern similar to that of one of the
PFGE banding pattern than those of the other two strains, but
(lane 4), isolated from the regional hospital, had a different
MR187 (lane 3). The other heteroresistant strain, MR209 banding patterns compared with those of MR135 (lane 2) and
to 13) had either identical (lanes 8 to 12) or very similar PFGE
patterns. The vancomycin-susceptible MRSA strains (lanes 5
unit in 1996), but they had identical
from a surgery unit in 1998 and MR187 from an intensive care
units of the urban hospital in different years (MR135
were indistinguishable from the genotypes other Thai MRSA
were isolated from patients whose MRSA infection
did not respond favorably to long-term vancomycin treatment. Other researchers also reported that vancomycin treatment
failure was associated with infection caused by MRSA hetero-
resistant to vancomycin (1, 13, 15, 17, 23, 29). Efforts to detect
deteriorate strains, therefore, may be warranted not only to monitor the progression of glycopeptide resistance acquisition by local MRSA strains, but also to predict the clinical effec-
tiveness of glycopeptide treatment of the patients infected with
MRSA.

MRSA strains with reduced susceptibilities to vancomycin in
Japan and in the United States were isolated after prolonged exposure to the antibiotic (4, 12, 24), as were two Thai strains.
MR135 was isolated from a patient treated with vancomycin
for 75 days and with teicoplanin for 3 days, and MR187 was
isolated after 14 days of vancomycin therapy. Strain MR209
was an exception. The strain was isolated from a patient who
had not been treated with any glycopeptide antibiotic. In this
case, the strain might have been transmitted to the patient
from another patient who had undergone glycopeptide treat-
ment of MRSA infection. This possibility may explain why the
strain had the lowest vancomycin resistance of the three
strains, since the vancomycin resistance phenotype is unstable
in the absence of antibiotic pressure (3). MR209 was marginal
with regard to heteroresistance if heteroresistance is defined as
having resistant subpopulations whose number is greater than
one in 10^6 (13).

The genotypes of three heteroresistant strains were quite
distinct from that of the Japanese strain Mu3 (Fig. 2), but they
were indistinguishable from the genotypes other Thai MRSA
strains retaining vancomycin susceptibility. Therefore, as re-
cently demonstrated in in vitro experiments (22), it is likely
that vancomycin resistance is acquired by MRSA strains with
diverse genetic backgrounds besides that of the Japanese
MRSA clone type II-A (13). In this regard, however, it was
noted that Thai strains had a different pattern of resistance
from that of Mu3. In contrast to Mu3, the Thai strains did not
contain larger resistant subpopulations capable of growth in 6
to 9 µg of vancomycin per ml (Fig. 1A). They were also less
resistant to teicoplanin than Mu3 or Mu50 (Fig. 1B). These
phenotypic differences in the resistance patterns indicate that

FIG. 2. PFGE banding patterns of Smal-digested chromosomal
DNAs of Thai MRSA strains with and without reduced susceptibilities
to glycopeptides. Lanes: 1, lambda concatemer standard marker (mo-
cular sizes in kilobases are indicated on the left); 2 to 4, strains
MR135, MR187, and MR209, respectively; 5 to 9, vancomycin-suscep-
tible MRSA strains isolated from four patients hospitalized in the
same surgical ward during the same period (from 1998 to 1999) as the
patient from whom strain MR135 was isolated; 10 to 13, vancomycin-
susceptible MRSA strains isolated from five patients admitted to the
same medical intensive care unit during the same period (from 1996 to
1997) as the patient from whom strain MR187 was isolated; 14, Mu3;
15, Smal-digested total DNA from NCTC 8325, used as a standard.

DISCUSSION

This is the first report of infection due to MRSA strains with reduced susceptibility to vancomycin in Thailand. Although
the three isolates were heterogeneously resistant to vancomy-
cin, this report is an early warning that S. aureus strains with
full resistance to vancomycin might emerge in the future, em-
phasizing the importance of a laboratory capability of identi-
fying heterogeneous vancomycin resistance. The disk diffusion
method is inadequate to detect S. aureus strains with reduced
susceptibilities to vancomycin (26). Although well-standard-
ized microdilution MIC determination can detect S. aureus
clinical isolates with reduced susceptibilities to vancomycin, it
cannot detect heteroresistance. Based on the MICs, all three
isolates reported in this study are judged to be susceptible to
glycopeptide antibiotics (20). Strains MR135 and MR187,
however, were isolated from patients whose MRSA infection
did not respond favorably to long-term vancomycin treatment. Other researchers also reported that vancomycin treatment
failure was associated with infection caused by MRSA hetero-
resistant to vancomycin (1, 13, 15, 17, 23, 29). Efforts to detect
deteriorate strains, therefore, may be warranted not only to monitor the progression of glycopeptide resistance acquisition by local MRSA strains, but also to predict the clinical effec-
tiveness of glycopeptide treatment of the patients infected with
MRSA.
the mechanism of glycopeptide resistance in Thai strains is different from that in Japanese MRSA strains (8). Research is under way to clarify the genetic mechanism behind Thai strains expressing reduced susceptibilities to glycopeptide antibiotics.

ACKNOWLEDGMENTS

This work was a part of the Nosocomial Infections and Drug-Resistant Microorganism program, which was supported by the Core University System Exchange Project under the Japan Society for the Promotion of Science, coordinated by the University of Tokyo Graduate School of Medicine and Mahidol University. The work was also supported by an unrestricted grant from Wyeth Lederle Japan Ltd.

We thank Rachada Satthimathakul and Siriporn Siripalakit, Centre for Nosocomial Infection Control, Faculty of Medicine, Siriraj Hospital, Mahidol University.

REFERENCES