Expanded-Spectrum Cephalosporin-Resistant Salmonella Strains in Romania

Vivi Miriagou,1* Roxana Filip,2 Gabriela Coman,2 and Leonidas S. Tzouvelekis3

*Laboratory of Bacteriology, Hellenic Pasteur Institute,1 and Department of Microbiology, Medical School, University of Athens,2 Athens, Greece, and Department of Microbiology, University of Medicine and Pharmacy “Gr. T. Popa,” University of Iasi, Iasi, Romania2

Received 28 May 2002/Returned for modification 14 July 2002/Accepted 5 August 2002

There is an increasing number of studies reporting the emergence of nontyphoid Salmonella enterica serotype Typhimurium and other Salmonella enterica serotypes resistant to expanded-spectrum cephalosporins (ESC). This resistance is mostly due to the acquisition of plasmids that encode various β-lactamases, including class A extended-spectrum β-lactamases (ESBLs) (2, 8, 11, 13–16; E. Cardinale, P. Colbachini, J. D. Perrier-Gros-Claude, A. Gassama, and A. Aïdara-Kane, Letter, J. Clin. Microbiol. 39:2373–2374; B. P. Cherian, N. Singh, W. Charles, and P. Prabhakar, Letter, Emerg. Infect. Dis. 5:181-182) and class C cephalosporinases (3, 4, 6, 18, 20, 21). The spread of such strains may have serious clinical consequences, since ESC are the antibiotics of choice for invasive salmonella infections in children. They may also facilitate the community spread of bla genes. In the present study we describe ESC-resistant Salmonella strains that were recently isolated from a pediatric population in Iasi, Romania.

Fourteen ESC-resistant, nontyphoid Salmonella isolates were studied (see Table 1). These isolates were derived from stool specimens of children with diarrhea from October 2000 to February 2001 in the pediatric hospital in Iasi. This hospital is the major pediatric tertiary-care institution (640 beds, 40,000 admissions per year) in northeastern Romania (population of the Iasi area and the eight neighboring districts, 4.9 million). Species identification was performed by means of the API 20E system (bioMérieux). Serotyping was performed with commercially available anti-O and anti-H antisera (bioMérieux).

Selected isolates were typed by pulsed-field gel electrophoresis (PFGE) of XbaI-restricted genomic DNA as described previously (5). Restriction fragments were separated in a 1.2% agarose gel with a CHEF DRII apparatus (Bio-Rad).

Susceptibility to antibiotics, including ESC, was assessed by a disk diffusion method (9). Strains were examined for production of ESBLs by using Etest strips containing ceftazidime and clavulanic acid (AB Biodisk). This test was used for all Salmonella isolates exhibiting resistance or decreased susceptibility to ESC.

Escherichia coli K-12 strain 14R525 (Nalr) was used as the recipient in conjugation experiments; E. coli DH5α was used in transformation. Conjugal transfer was carried out in mixed broth cultures as described previously (17). Transconjugants were selected on Mueller-Hinton agar containing ampicillin (50 μg/ml) plus nalidixic acid (200 μg/ml). Plasmid DNA preparations were obtained by an alkaline lysis technique (12). Plasmids purified from low-melting-point agarose (0.8%) were used to transform E. coli competent cells.

β-Lactamases were extracted by ultrasonic treatment of overnight bacterial cultures in Mueller-Hinton broth. Isoelectric focusing was performed according to the method of Matthew et al. (7), with polyacrylamide gels containing ampholytes (pH range, 3.5 to 9.5; APBiotech).

PCR assays specific for tem and shv genes were performed as described previously (1). Detection of bla genes related to the Citrobacter freundii ampC was carried out as described by Koeck et al. (6). Nucleotide sequences of the PCR products were determined with an ABI Prism 377 DNA sequencer (Perkin-Elmer).

From October 2000 to February 2001, a total of 40 Salmonella isolates were derived from cases of gastroenteritis in the pediatric hospital of Iasi. Hospital records indicated that this Salmonella isolation rate was not significantly different from the rates of previous years. Notably, 14 (35%) of these isolates were resistant to ESC (ceftriaxone, cefotaxime, and ceftazidime), while before and after the study period such isolates occurred only sporadically.

Thirteen isolates (ST1 to ST13) belonged to the Salmonella serotype Typhimurium. One isolate (SH14) was Salmonella serotype Heidelberg. Eleven of the isolates were community acquired. The remaining three were most likely acquired in two district hospitals (ST1 and ST7) and a nursing home (ST11). All but one serotype Typhimurium isolate exhibited a cephalosporinase phenotype, i.e., resistance to penicillins, penicillin-clavulanate combinations, cefoxitin, and ESC. The remaining isolate (ST5) probably produced an ESBL, given that it was resistant to the tested ESC but susceptible to cefoxitin.

* Corresponding author. Mailing address: Laboratory of Bacteriology, Hellenic Pasteur Institute, Vass. Sofias 127, Athens 11521, Greece. Phone: 03010-6478810. Fax: 03010-6423498. E-mail: miriagou@mail.pasteur.gr.
TABLE 1. Characteristics of 14 ESC-resistant Salmonella strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>Serotype</th>
<th>Patient dataa</th>
<th>Likely place of acquisition</th>
<th>Isolation date</th>
<th>(\beta)-Lactams to which strain is resistant</th>
<th>(\beta)-Lactamase(s) produced</th>
<th>Other antibiotics to which strain is resistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST1</td>
<td>Typhimurium</td>
<td>M 4</td>
<td>District hospital A</td>
<td>October 2000</td>
<td>AMP, AMC, TIM, FOX, ESC</td>
<td>CMY-2, TEM-1</td>
<td>GEN, TOB, S, TET, CHL</td>
</tr>
<tr>
<td>ST2</td>
<td>Typhimurium</td>
<td>M 1</td>
<td>Community</td>
<td>October 2000</td>
<td>AMP, AMC, TIM, FOX, ESC</td>
<td>CMY-2, TEM-1</td>
<td>GEN, TOB, S, TET, CHL</td>
</tr>
<tr>
<td>ST3</td>
<td>Typhimurium</td>
<td>F 1</td>
<td>Community</td>
<td>November 2000</td>
<td>AMP, AMC, TIM, FOX, ESC</td>
<td>CMY-2, TEM-1</td>
<td>GEN, TOB, S, TET, CHL</td>
</tr>
<tr>
<td>ST4</td>
<td>Typhimurium</td>
<td>M 2</td>
<td>Community</td>
<td>November 2000</td>
<td>AMP, AMC, TIM, FOX, ESC</td>
<td>CMY-2, TEM-1</td>
<td>GEN, TOB, S, TET, CHL</td>
</tr>
<tr>
<td>ST5</td>
<td>Typhimurium</td>
<td>M 4</td>
<td>Community</td>
<td>November 2000</td>
<td>AMP, ESC</td>
<td>SHV-5, TEM-1</td>
<td>GEN, TOB, S, TET, CHL</td>
</tr>
<tr>
<td>ST6</td>
<td>Typhimurium</td>
<td>F 3</td>
<td>Community</td>
<td>November 2000</td>
<td>AMP, AMC, TIM, FOX, ESC</td>
<td>CMY-2, TEM-1</td>
<td>GEN, TOB, S, TET, CHL</td>
</tr>
<tr>
<td>ST7</td>
<td>Typhimurium</td>
<td>F 2</td>
<td>District hospital B</td>
<td>December 2000</td>
<td>AMP, AMC, TIM, FOX, ESC</td>
<td>CMY-2</td>
<td>GEN, TOB, S, TET, CHL</td>
</tr>
<tr>
<td>ST8</td>
<td>Typhimurium</td>
<td>M 6</td>
<td>Community</td>
<td>December 2000</td>
<td>AMP, AMC, TIM, FOX, ESC</td>
<td>CMY-2, TEM-1</td>
<td>GEN, TOB, S, TET, CHL</td>
</tr>
<tr>
<td>ST9</td>
<td>Typhimurium</td>
<td>M 1</td>
<td>Community</td>
<td>December 2000</td>
<td>AMP, AMC, TIM, FOX, ESC</td>
<td>CMY-2, TEM-1</td>
<td>GEN, TOB, S, TET, CHL</td>
</tr>
<tr>
<td>ST10</td>
<td>Typhimurium</td>
<td>M 10</td>
<td>Community</td>
<td>December 2000</td>
<td>AMP, AMC, TIM, FOX, ESC</td>
<td>CMY-2, TEM-1</td>
<td>GEN, TOB, S, TET, CHL</td>
</tr>
<tr>
<td>ST11</td>
<td>Typhimurium</td>
<td>F 10</td>
<td>Nursing home</td>
<td>December 2000</td>
<td>AMP, AMC, TIM, FOX, ESC</td>
<td>CMY-2, TEM-1</td>
<td>GEN, TOB, S, TET, CHL</td>
</tr>
<tr>
<td>ST12</td>
<td>Typhimurium</td>
<td>F 5</td>
<td>Community</td>
<td>February 2001</td>
<td>AMP, AMC, TIM, FOX, ESC</td>
<td>CMY-2, TEM-1</td>
<td>GEN, TOB, S, TET, CHL</td>
</tr>
<tr>
<td>ST13</td>
<td>Typhimurium</td>
<td>M 2</td>
<td>Community</td>
<td>February 2001</td>
<td>AMP, AMC, TIM, FOX, ESC</td>
<td>CMY-2, TEM-1</td>
<td>GEN, TOB, S, TET, CHL</td>
</tr>
<tr>
<td>SH14</td>
<td>Heidelberg</td>
<td>M 2</td>
<td>Community</td>
<td>February 2001</td>
<td>AMP, AMC, TIM, FOX, ESC</td>
<td>CMY-2, TEM-1</td>
<td>GEN, TOB, S, TET, CHL</td>
</tr>
</tbody>
</table>

a M, male; F, female.

and penicillin-clavulanate combinations. Production of an ESBL was corroborated by a positive result with the Etest. The isolates were also resistant to chloramphenicol, sulfonamides, and tetracycline. Resistance to aminoglycosides was also observed in all but one serotype Typhimurium isolate (ST7) (Table 1).

Isoelectric focusing showed production of a \(\beta\)-lactamase with an isoelectric point (pI) of 9.0 by all 13 isolates exhibiting a cephalosporinase phenotype. Twelve of these also produced a \(\beta\)-lactamase with a pI of 5.4 (presumably a TEM-1, which was also indicated by \(\text{bla}_{\text{TEM}}\)-specific PCR assays). None of the 13 isolates could transfer \(\beta\)-lactam resistance to \(E. coli\) by conjugation. However, transformation of \(E. coli\) with plasmid DNA preparations from these isolates yielded clones that were resistant to \(\beta\)-lactams and produced an enzyme with a pI equal to 9.0. Clinical isolates and transformants were positive in a \(\text{shv}\)-specific PCR assay. The sequencing of PCR products showed a \(\beta\)-lactamase gene identical to \(\text{cmy}-2\). The gene was located in an approximately 60-MDa plasmid that was common to all 13 isolates, as indicated by restriction endonuclease analysis and hybridization experiments (data not shown). Transformants did not produce TEM-1 yet were susceptible to non-\(\beta\)-lactam antibiotics, indicating that \(\text{cmy}-2\) was probably the sole antibiotic resistance gene carried by this plasmid. The CMY-2-producing isolates exhibited similar PFGE patterns, indicating a genetic relatedness (Fig. 1).

The ESBL-producing serotype Typhimurium isolate (ST5) was able to transfer ESC resistance to \(E. coli\) by conjugation. This isolate produced a clavulenate-sensitive \(\beta\)-lactamase with a pI equal to 8.2. PCR analysis identified the respective \(\text{bla}\) gene as an \(\text{shv}\). The sequence of a segment (623 bp) that included codons 238 and 240 (Ambler’s numbering) was 100% homologous to the respective segment of the \(\text{shv}-5\) gene. The \(\text{SHV}-5\)-encoding plasmid (approximately 90 MDa in size) also mediated resistance to gentamicin, tobramycin, sulfonamides, tetracycline, and chloramphenicol.

The emergence of ESC-resistant salmonellae in Romania has been recognized since 1997 (R. Filip et al., Abstr. 10th Eur. Congr. Clin. Microbiol. Infect. Dis., abstr. MoP105, 2000). A compilation of the recent data regarding the epidemiology of salmonella infections in Romania has not yet been performed. Also, data on the susceptibility status of salmonellae to ESC are not available from every hospital. Therefore, the current prevalence of resistance to ESC cannot be estimated. However, of the 40 \(Salmonella\) isolates recovered in the pediatric hospital, 14 were resistant to ESC and most were community acquired, factors that suggest a widespread resistance, at least during the study period.

Thirteen (12 serotype Typhimurium and 1 serotype Heidelberg) of the 14 isolates produced a CMY-2 cephalosporinase that is similar to the chromosomal \(\beta\)-lactamase of \(C. freundii\). The 12 serotype Typhimurium isolates may constitute a single clone, as indicated by the similarity of the PFGE patterns. The time clustering of the respective infections also suggested an
outbreak, though it was not possible to trace epidemiological associations from the patients’ records.

CMY-2 confers resistance to various ESC, including ceftriaxone, which is the antibiotic of choice for invasive salmonella infections in children. Plasmid-mediated AmpC β-lactamases of the CMY type have been found worldwide in nosocomial enterobacteria, particularly Klebsiella pneumoniae (10). Salmonella could have acquired the apmc gene from such microorganisms. This hypothesis could have also accounted for the emergence of the SHV-5-producing serotype Typhimurium isolate ST5, which exhibited a multidrug resistance phenotype similar to that of many ESBL-producing K. pneumoniae isolates in Romanian hospitals. Accordingly, previous studies indicated that Salmonella strains producing SHV ESBLs might have acquired the respective bla genes from bacteria of the hospital flora (15, 19). The emergence of ESC resistance in salmonellae may also have been facilitated by the use of oximino-β-lactams in the animal industry. Recent studies from the United States have shown that CMY-2-producing salmonellae have been spread in livestock and that exchange of CMY-2 encoding plasmids between enterobacteria from food animals and humans has occurred (3, 21). Plasmid-mediated CMY-2 has also been described for strains of Salmonella enterica serotype Senftenberg in Algeria (6) and Salmonella enterica serotype Enteritidis in Italy (18). The fact that salmonellae-producing CMY-2 have also emerged in Romania is interesting. A comparison of the CMY-2-producing salmonellae and the respective plasmids would provide useful clues regarding the evolution of and the mode by which this type of resistance spreads. Finally, the present study indicates that ESC-resistant salmonellae have been established in Romania, rendering the inclusion of ESC in routine susceptibility testing for this microorganism necessary.

We thank Charitini Magana for technical assistance.

REFERENCES