Charatcerization of rpoB Mutations in Rifampin-Resistant Clinical Isolates of *Mycobacterium tuberculosis* from Turkey by DNA Sequencing and Line Probe Assay

Cengiz Cавusoglu,1* Suleyha Hilmioglu,1 Sevinc Gunes,2 and Altinay Bilgic1

Department of Microbiology and Clinical Microbiology, School of Medicine, Ege University 35100,1 and Region Tuberculosis Laboratory, Kahramanlar,2 Izmir, Turkey

Received 11 July 2002/Returned for modification 3 September 2002/Accepted 21 September 2002

Mutations in an 81-bp region of the rpoB gene associated with rifampin resistance were studied in 41 rifampin-resistant clinical strains of *Mycobacterium tuberculosis* isolated in Turkey. Fourteen different rpoB alleles, three of which had not been reported before, were found. A reverse hybridization-based line probe assay (the Inno-LiPA Rif.TB test) with rapid detection of the mutations was evaluated with these isolates. Rifampin resistance was correctly identified in 23 of 41 isolates (56.1%) with the line probe assay (LiPA) for these mutations. Seventeen of 41 isolates (41.5%) yielded hybridization patterns, with at least one negative signal obtained with the S probes for the wild type. One isolate was identified as rifampin sensitive by the line probe assay. The rate of concordance of the results of the line probe assay with the results of the in vitro susceptibility test was high (97.6%). These results demonstrate that the line probe assay kit may be useful for the rapid diagnosis of rifampin-resistant tuberculosis.

Mycobacterium tuberculosis remains one of the most significant causes of death from an infectious agent, annually leading to 2 million deaths worldwide (4). As the incidence of tuberculosis has increased, there has been a corresponding rise in the incidence of drug-resistant strains of *M. tuberculosis*. Early diagnosis of the disease and rapid identification of resistance to primary antituberculosis agents are essential for efficient treatment and control of multidrug-resistant (MDR) strains. Rifampin (RIF) is one of the most potent antituberculosis drugs; therefore, resistance to RIF often results in high clinical relapse rates, particularly if RIF resistance is associated with resistance to other antituberculosis drugs (5, 14). Moreover, more than 90% of RIF-resistant isolates are also resistant to isoniazid; therefore, detection of RIF resistance could also identify MDR strains (3, 5, 17). The incidence of pulmonary tuberculosis in Turkey was 35.5 per 100,000 population in 2000. In the Aegean region, 8.2% of *M. tuberculosis* strains isolated between 1999 and 2001 were found to be resistant to RIF. During the same period, the incidence of resistance to both RIF and isoniazid was 6.8% (6).

Collectively, DNA sequencing studies demonstrate that more than 95% of RIF-resistant *M. tuberculosis* strains have a mutation within the 81-bp hot-spot region (codons 507 to 533) of the RNA polymerase B subunit (rpoB) gene (9, 10, 12, 13, 15, 16, 18, 20, 21, 23, 24). In addition, other studies reveal that mutations associated with RIF resistance can also occur in other regions of the rpoB gene, although these occur less frequently (7, 8). Several molecular methods have been developed in recent years to evaluate the rpoB gene for RIF resistance mutations, including DNA sequencing, line probe assay, and analysis with DNA microarrays (19). These molecular tests can also serve as a means of detecting molecular epidemiological markers, since the relative frequencies of the alleles associated with resistance can vary geographically (10).

The aim of the present study was to determine the drug resistance profiles of 41 RIF-resistant *M. tuberculosis* isolates obtained in western Turkey and to detect and identify mutations present in the rpoB gene. Two molecular assays were used in this study. In the first one, rpoB mutations were determined by a commercially available rapid test, the PCR-based reverse hybridization line probe assay (LiPA; Inno-LiPA Rif.TB test; Innogenetics N.V., Ghent, Belgium). The results obtained by LiPA were then compared with the results obtained by automated DNA sequence analysis.

MATERIALS AND METHODS

M. tuberculosis isolates. The 41 RIF-resistant clinical *M. tuberculosis* isolates obtained from 41 different patients used in this study were isolated in the Region Tuberculosis Laboratory and Ege University Mycobacteriology Laboratory, Izmir, Turkey. These laboratories serve about 8 million people in the Aegean region of Turkey. The proportions of MDR and new drug-resistant strains in the isolates were 11% and 20%, respectively. Of the 41 isolates, 8 (20%) were resistant to both rifampin and isoniazid; 1 was resistant to rifampin and ethambutol; and 2 were resistant to streptomycin and isoniazid.

Detection of mutations. DNA sequencing was performed with an automated DNA sequencer (model 310; Applied Biosystems, Foster City, Calif.). DNA was extracted from cultures and amplified in a PCR. A 394-bp product was generated by using primers LiPA OP1 (outer primer; 5'-GAGAATTTCCGGCGCGGACC TGATCC-3') and LiPA OP2 (outer primer; 5'-GGAAAGCTTGACCGCGC G TACACC-3'), and a 256-bp fragment of the rpoB gene was sequenced by using primers LiPA IP1 (inner primer; 5'-GGTCCGGCATGTCGGGAATG-3') and LiPA IP2 (inner primer; 5'-GCCGCTTCGCGAACCTCCACGC-3') (22).

The Inno-LiPA Rif.TB LiPA kit was used according to the instructions of the manufacturer. The RIF resistance-determining region of the rpoB gene was amplified with specific primer-labeled primers by using 1 U of Taq DNA polymerase per reaction mixture in a thermocycler (model 9600; Perkin-Elmer). The
biotinylated 256-bp PCR product was then denatured and hybridized to a strip by use of the M. tuberculosis complex-specific probe. The reactivities of an amplified fragment with the S-type probes for the wild type (probes S1 through S5) were used to detect the mutations that lead to RIF resistance in M. tuberculosis. Furthermore, four probes (R-type probes) were specifically designed to hybridize to the sequences of the four most frequently observed mutations: R2 (ApS-516-Val), R4a (His-526-Tyr), R4b (His-526-Asp), and R5 (Ser-531-Leu).

In conclusion, when all the wild-type S probes gave a positive signal and all the R probes reacted negatively, the M. tuberculosis isolate was considered susceptible to RIF. When at least one negative signal was obtained with the wild-type S probes, the isolate was considered RIF resistant (Inno-LiPA Rif.TB S pattern). When at least one negative signal was obtained with the wild-type S probes and was always accompanied by a negative reaction with the corresponding S probe (Inno-LiPA Rif.TB R patterns), a positive reaction was obtained with one of the four R probes and was always accompanied by a negative reaction with the wild-type S probes, the isolate was considered RIF resistant (Inno-LiPA Rif.TB S pattern).

The sequences with novel mutations found in this study are deposited in EMBL under accession numbers AF515787, AF515788, and AF515789.

RESULTS AND DISCUSSION

Fourteen different types of mutations were identified in 41 RIF-resistant M. tuberculosis isolates. The codons most frequently involved in mutations were codon 531 (56.1%) and codon 526 (19.5%). In concordance with previous reports (9, 10, 12, 13, 15, 16, 18, 20, 21, 23, 24) but not that of Barfai et al. (1), 19 (46.3%) isolates carried the most common mutation, Ser-531-Leu. Two (4.9%) isolates had an His-526-Tyr mutation, one (2.4%) isolate had an His-526-Asp mutation, and another (2.4%) isolate had an Asp-516-Val mutation. These mutations were also correctly detected by LiPA (Table 2).

Comparison of these data with those in the literature (1, 9, 13, 23, 24) has shown that the frequencies of particular mutations in RIF-resistant M. tuberculosis isolates from western Turkey are different from those that have been reported for isolates from other parts of the world.

LiPA did not detect the correct type of mutation in 17 (41.5%) isolates. However, it indicated the presence of a genetic alteration. Moreover, one isolate that had a mutation outside the 81-bp hot-spot region of the rpoB gene was identified as RIF sensitive by LiPA. Three novel mutations were also recognized in this study. A mutation from ATG (Met) to ATC (Ile) at codon 515 and a mutation from CTG (Leu) to CCG (Pro) at codon 533 in one isolate and insertion of CGG between codons 514 and 515 in one isolate have not been reported previously. One new mutation (CAG to CAT) outside the 81-bp hot-spot region was also seen in one isolate. Previous research (12, 16, 18, 24) has also reported mutations outside the hot-spot region: GGG to GAG at codon 534, CCC to CAC at codon 535, GAG to GAT at codon 504, GAG to GAT at codon 541, TCG to GCG at codon 553, and ATC to TTC at codon 572. Although the Turkish isolates exhibited the three novel mutations mentioned above, the patterns of mutations in the 81-bp hot-spot region were similar to those reported for the majority of clinical isolates in different geographical areas of the world. In this study, no association between specific rpoB mutations and multidrug resistance patterns was found, supporting the view that the mutations leading to RIF resistance are independent events unrelated to those mutations affecting the development of resistance to other antibiotics tested.

Mutations at codon 531, followed by mutations at codons 526, 516, and 511, are the most common mutations worldwide. While TTG at codon 531 and CCG at codon 516 are the dominant mutated alleles, codon 526 and codon 516 show large numbers of allelic variations (Fig. 1). Two postulates can be offered to explain this situation. (i) Billington et al. (2)
observed that mutants isolated more frequently in clinical practice have higher mean relative fitness, and the prevalence of each mutant type depends on its ability to survive. This might be the reason for the higher rates of occurrence of the mutation of TCG to TTG at codon 531 and the mutation of CTG to CCG at codon 511 in isolates worldwide (12). (ii) Mutations within codons 526 and 516 have been shown to lead to high-level RIF resistance in *M. tuberculosis* (23); therefore, mutations continue to arise in these codons, probably due to the ability of *M. tuberculosis* to adapt to drug exposure.

LiPA rapidly identifies clinical isolates as members of the *M. tuberculosis* complex and determines the presence of point mutations within the 81 bp of the rpoB gene. The test can detect the type of mutation for only the four most common mutations of the rpoB gene (Ser-531-Leu, His-526-Tyr, His-526-Asp, and Asp-516-Val), while for isolates with other mutations, it indicates only the presence of a genetic alteration. However, previous reports and this study suggest that the frequencies of particular mutations are different in different countries; therefore, further studies on how to improve the kit for the precise diagnosis of RIF-resistant *M. tuberculosis* infections are needed (Table 3).

In conclusion, in the present study, LiPA was able to detect a genetic alteration in 40 (97.6%) of the 41 RIF-resistant

![FIG. 1. Mutations and alleles in rifampin-resistant *M. tuberculosis* isolates reported by different groups (1, 9, 12, 13, 16, 20, 21, 23, 24; this study). The original sequence is boxed. The bottom panels show the mutation at a single codon; and the upper panels show the mutations involved in double, triple, and quadruple codons.](http://jcm.asm.org/Downloaded-from)
strains and to identify the particular mutation in 23 (56.1%) strains (Table 2). Since 90.2% of RIF-resistant strains examined in this study were also resistant to isoniazid, this indicates that RIF resistance is a good predictor of multidrug resistance in Turkey. Although the kit could not detect in vitro resistant isolates with the wild-type sequence in the hot-spot region of the rpoB gene, it may be especially useful for routine work in clinical laboratories that are not capable of carrying out DNA sequencing. However, the test results must always be confirmed by phenotypic methods.

ACKNOWLEDGMENT

This work was supported by the Ege University Medical Science Program (grant 2000/1/IP.007).

REFERENCES

