Diffusely Adherent *Escherichia coli* as a Cause of Acute Diarrhea in Young Children in Northeast Brazil: a Case-Control Study

Isabel C. A. Scaletsky,¹* Sandra H. Fabbrocitti,¹ Rozane L. B. Carvalho,² Claudia R. Nunes,³ Helcio S. Maranhão,⁴ Mauro B. Morais,² and Ulysses Fagundes-Neto²

Departmento de Microbiologia, Imunologia e Parasitologia¹ and Disciplina de Gastroenterologia Pediátrica,² Universidade Federal de São Paulo, São Paulo, SP, Hospital Universitário Materno-Infantil, São Luiz, MA,³ and Departamento de Pediatria, Universidade Federal do Rio Grande do Norte, Natal, RN,⁴ Brazil

Received 16 July 2001/Returned for modification 17 September 2001/Accepted 9 November 2001

Diarrhea remains an important public health problem for children in developing areas of northeastern Brazil. The bacterial pathogen most commonly associated with endemic forms of childhood diarrhea is *Escherichia coli*. At least five categories of diarrheagenic *E. coli* strains are recognized on the basis of distinct epidemiological and clinical features, specific virulence determinants, and an association with certain serotypes: enteropathogenic *E. coli* (EPEC), enterotoxigenic *E. coli* (ETEC), enteroinvasive *E. coli* (EIEC), enterohemorrhagic *E. coli* (EHEC), and enteroaggregative *E. coli* (EAEC) (13). Recently, diffusely adherent *E. coli* (DAEC) strains have been recognized as the sixth class of diarrheagenic *E. coli* and appear as a heterogeneous group (13). EPEC, EAEC, and DAEC isolates are characterized by their distinct patterns of adherence to cultured epithelial cells in vitro. EPEC strains bind to host cells in a pattern called localized adherence (LA), in which microcolonies form on the surfaces of the cells (15). EAEC isolates bind in an aggregative adherence (AA) pattern, which is characterized by a stacked brick-like arrangement on the surfaces of the cells as well as those of glass or plastic containers (13). DAEC strains are defined by a pattern of diffuse adherence (DA), in which the bacteria uniformly cover the entire cell surface (15). The implication of DAEC strains in diarrhea remains controversial, since some studies have reported that these strains are found similarly in children with and without diarrhea (6, 8). Tacket et al. (18) were unable to conclusively induce diarrhea with DAEC in adult volunteers but suggested that DAEC may cause disease in immunologically naive or malnourished children. Discrepancies among epidemiological studies could be explained by age-dependent susceptibility to diarrhea or by the use of an inappropriate detection method such as DNA probing (10). The current prospective case-control study was done to determine the role of DAEC strains as a cause of acute diarrhea in northeastern Brazil, where childhood diarrhea is endemic.

The study was conducted at the Hospital de Pediatria da Universidade Federal do Rio Grande do Norte (Natal, Rio Grande do Norte) and the Hospital Universitário Materno-Infantil (São Luiz, Maranhão). All children less than 2 years of age with acute diarrhea who were brought to the hospital ambulatory clinics from May 1998 to June 1999 were enrolled in the study. Clinical information was collected by means of a standard questionnaire. A control group of children who were examined during the same time period contained asymptomatic children who were matched with children in the study group by age and who were randomly selected from the well-child outpatient clinics of the same hospitals.

Two rectal swab specimens were collected from each child, placed in Cary-Blair transport medium, and processed within 4 h. One swab specimen was processed by routine microbiological and biochemical tests to identify *E. coli*, *Salmonella* spp., *Shigella* spp., *Campylobacter* spp., and *Yersinia enterocolitica*, while the second swab specimen was stored in 2 ml of phosphate-buffered saline (pH 7.4) at 4°C until it was tested for rotavirus by enzyme immunoassay. Fecal samples and/or rectal swab specimens were obtained for detection of *Giardia lamblia*, *Entamoeba histolytica*, and *Cryptosporidium* spp. *E. coli* strains were isolated on MacConkey agar plates. Four separate lactose-fermenting colonies, presumed to be *E. coli* by colony morphology, and two non-lactose-fermenting colonies of each

¹ Corresponding author. Mailing address: Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil. Phone: 55-11-55764537; Fax: 55-11-55716504. E-mail: scaletsky@ecb.epm.br.
distinct morphologic type were cultivated in commercial test systems (PROBAC do Brasil, São Paulo, Brazil) for biochemical confirmation of the species or genus. All *E. coli* colonies were submitted to slide agglutination with polyvalent and monovalent antisera (PROBAC do Brasil) against the O antigens of EPEC serogroups and EHEC strains. All *E. coli* strains were maintained in nutrient agar slants at room temperature.

All *E. coli* isolates were screened by colony DNA hybridization for detection of the diarrheagenic *E. coli* isolates listed in Table 1. The DNA probes were labeled with 50 μCi of [α-32P]dCTP by use of a random primer extension kit (RediPrime DNA Labelling system; Amersham). Colony blots were hybridized at 65°C overnight, washed with 0.1% sodium SSC (1× SSC is 0.15 M NaCl plus 0.015 M sodium citrate)-0.1% sodium dodecyl sulfate solution, and exposed to X-ray film overnight at −80°C.

All *E. coli* isolates were individually tested for specific patterns of LA, DA, and AA to HEp-2 cells as described by Scaletsky et al. (15).

Data derived from children with diarrhea and from controls were compared by two-tailed chi-square and Fisher’s exact tests.

In total, 468 fecal samples (of which 237 samples were from symptomatic children) were examined for enteric pathogens (Table 2). Rotavirus and *Shigella* spp. were isolated from 51 (21.5%) and 38 (16%) children with diarrhea, respectively, and from 13 (5.6%) and 5 (2.2%) controls, respectively (for both groups, *P* < 0.01). *Salmonella* spp. were isolated from three children with diarrhea and one control, *G. lamblia* was isolated from three children with diarrhea and three controls, and *E. histolytica* was isolated from two children with diarrhea and one control (*P* > 0.05).

E. coli isolates were tested with DNA probes to classify them into the different categories, and the same *E. coli* strains were also tested by the HEp-2 cell adhesion assay to identify the different adherence patterns (Table 2). A total of 221 diarrheagenic *E. coli* strains were isolated from the 468 fecal specimens: 26 nonadherent EPEC strains (atyypical EPEC) and 195 HEp-2-adherent *E. coli* strains. Among the latter isolates, 110 were identified as the only pathogen in the stools of children with diarrhea, and 85 were from controls.

Twenty-one children with diarrhea (8.9%) and seven children without diarrhea (3.0%) carried typical EPEC strains that

TABLE 2. Isolation of pathogens from the stools of children with diarrhea

<table>
<thead>
<tr>
<th>Pathogen and test</th>
<th>No. (%) of children infected</th>
<th>P value<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotavirus</td>
<td>51 (21.5)</td>
<td>13 (5.6)</td>
</tr>
<tr>
<td>Shigella spp.</td>
<td>38 (16.0)</td>
<td>5 (2.1)</td>
</tr>
<tr>
<td>Salmonella spp.</td>
<td>3 (1.3)</td>
<td>1 (0.4)</td>
</tr>
<tr>
<td>E. histolytica</td>
<td>2 (0.8)</td>
<td>1 (0.4)</td>
</tr>
<tr>
<td>G. lamblia</td>
<td>3 (1.3)</td>
<td>3 (1.3)</td>
</tr>
<tr>
<td>Rotavirus + EAEC</td>
<td>2 (0.8)</td>
<td>0</td>
</tr>
<tr>
<td>Rotavirus + DAEC</td>
<td>3 (1.3)</td>
<td>0</td>
</tr>
<tr>
<td>Shigella spp + DAEC</td>
<td>2 (0.8)</td>
<td>0</td>
</tr>
<tr>
<td>Control group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotavirus</td>
<td>13 (5.6)</td>
<td>13 (5.6)</td>
</tr>
<tr>
<td>Shigella spp.</td>
<td>5 (2.1)</td>
<td>5 (2.1)</td>
</tr>
<tr>
<td>Salmonella spp.</td>
<td>1 (0.4)</td>
<td>1 (0.4)</td>
</tr>
<tr>
<td>E. histolytica</td>
<td>1 (0.4)</td>
<td>1 (0.4)</td>
</tr>
<tr>
<td>G. lamblia</td>
<td>3 (1.3)</td>
<td>3 (1.3)</td>
</tr>
<tr>
<td>Rotavirus + EAEC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rotavirus + DAEC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Shigella spp + DAEC</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

^a A total of 237 children with diarrhea less than 2 years of age and 231 matched controls were studied.

^b *P* values were determined by chi-square or Fisher’s exact, test. Boldface data indicate a significant difference.
controls were studied. cant difference. were signi
acularly associated with diarrhea (P < 0.01), partic-
ularly among children <6 months old (Table 3). EPEC has
been shown to be an important cause of diarrhea in the region
studied as well as in other regions of Brazil (16).

Table 3. Diarrheagenic Escherichia coli detected among
patients and controls by age groupa

<table>
<thead>
<tr>
<th>Organism</th>
<th>Age groupb (mo)</th>
<th>No. (%) of infected children</th>
<th>P valuec</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diarrhea group</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>DAEC</td>
<td>0–5</td>
<td>8 (13.8)⟨c⟩</td>
<td>9 (16.1)⟨c⟩</td>
</tr>
<tr>
<td></td>
<td>6–12</td>
<td>27 (21.6)⟨c⟩</td>
<td>28 (22.6)⟨c⟩</td>
</tr>
<tr>
<td></td>
<td>12–24</td>
<td>14 (25.9)</td>
<td>3 (5.9)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>49 (20.7)</td>
<td>40 (17.3)</td>
</tr>
<tr>
<td>EAEC</td>
<td>0–5</td>
<td>13 (22.4)⟨c⟩</td>
<td>7 (12.5)⟨c⟩</td>
</tr>
<tr>
<td></td>
<td>6–12</td>
<td>21 (16.8)⟨c⟩</td>
<td>24 (19.3)⟨c⟩</td>
</tr>
<tr>
<td></td>
<td>12–24</td>
<td>6 (11.1)⟨c⟩</td>
<td>7 (13.7)⟨c⟩</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>40 (16.9)</td>
<td>38 (16.4)</td>
</tr>
<tr>
<td>EPEC, d typical</td>
<td>0–5</td>
<td>14 (24.1)</td>
<td>2 (3.6)</td>
</tr>
<tr>
<td></td>
<td>6–12</td>
<td>7 (5.6)</td>
<td>5 (4.0)</td>
</tr>
<tr>
<td></td>
<td>12–24</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>21 (8.9)</td>
<td>7 (3.0)</td>
</tr>
<tr>
<td>EPEC, e atypical</td>
<td>0–5</td>
<td>5 (8.6)</td>
<td>1 (1.8)</td>
</tr>
<tr>
<td></td>
<td>6–12</td>
<td>6 (4.8)</td>
<td>9 (7.2)</td>
</tr>
<tr>
<td></td>
<td>12–24</td>
<td>2 (3.7)</td>
<td>3 (5.9)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>13 (5.5)</td>
<td>13 (5.6)</td>
</tr>
</tbody>
</table>

a A total of 237 children with diarrhea less than 2 years of age and 231 matched controls were studied.

b For children with diarrhea there were 58, 125, and 54 children in each of the three age groups, respectively. For the controls, there were 56, 124, and 51 children in each of the three age groups, respectively.

c The isolates hybridized with the specific DNA probe.

d Typical isolates were EAPEC positive.

e Atypical isolates were EAPEC negative, and nonadherent.

f P values were determined by chi-square or Fisher’s exact test. Boldface data indicate a significant difference.

were significantly associated with diarrhea (P < 0.01), partic-
ularly among children <6 months old (Table 3). EPEC has
been shown to be an important cause of diarrhea in the region
studied as well as in other regions of Brazil (16).

Forty children with diarrhea (16.9%) and 38 children with-
out diarrhea (16.4%) were infected with EAEC; thus, there
was no correlation between EAEC carriage and diarrhea (P =
1.00). Similarly, there was no age-related association of diarr-
hea with the presence of EAEC in feces (Table 3). However,
in the group aged 0 to 5 months, the frequency of EAEC
isolation was twofold higher for children with diarrhea. A num-
ber of EAEC isolates failed to hybridize with the EPEC probe.
Studies in Fortaleza, another large urban center in northeast-
ern Brazil, have associated EAEC with persistent diarrhea (4).
However, in the present study, all the episodes identified were
acute diarrhea.

DAEC was recovered from the stools of 49 children with
diarrhea (20.7%) and 40 children without diarrhea (17.3%)
(Table 2). Thus, overall, DAEC was not significantly associated
with diarrhea (P = 0.41). In children <12 months of age, the
presence of a DAEC isolate was not significantly associated with
diarrhea (P = 0.95). In contrast, DAEC was significantly
associated with diarrhea in children >12 months of age (P =
0.01) (Table 3); the symptoms found in these children were not
distinct from those observed in children <12 months of age.
None of the DAEC strains were positive for the classic sero-
groups tested, and none of them reacted with the AIDA-I
probe. Thirty-one (13.1%) DAEC strains from children with
diarrhea and 27 (11.7%) DAEC strains from the control group
hybridized with the daaC probe; all the DAEC isolates from
children >12 months of age were negative for hybridization
with this probe. In a study conducted in New Caledonia,
France, DAEC probe-positive strains were significantly asso-
ciated with diarrhea only in children upon 2 years of age (5).

Our results demonstrate the previously unrecognized impor-
tance of DAEC as a cause of childhood diarrhea in the region
of Brazil studied and support the evidence from prospective
case-control studies showing an association of DAEC with
diarrhea in young children (7). In the present study, DAEC was
associated with diarrhea in children >12 months of age; in
contrast, the presence of DAEC in younger children was not
associated with diarrhea. Further characterization of the viru-
ulence factors of DAEC strains, including identification of the
adhesins of daaC-negative DAEC isolates from the present
study, is under investigation.

In conclusion, our findings support the association of DAEC
with diarrheal disease in children >12 months of age. Statis-
tical analysis of Escherichia coli strains isolated from diarrheal stool
specimens and controls indicated that diffusely adherent Escherichia coli
strains should be considered potential pathogens in northeastern
Brazil.

We thank Beatriz A. Castilho and Alfredo G. Torres for critical
reading of the manuscript and helpful suggestions.

This work was supported by Fundação de Amparo à Pesquisa do
Estado de São Paulo (FAPESP) and Conselho Nacional de Desen-
volvimento Científico e Tecnológico (CNPq).

REFERENCES

sensitive and specific DNA probe to identify enteraggregative E coli, a newly
(AIDA-I) involved in diffuse adherence of enteropathogenic Escherichia coli.
characterization of a fimbrial adhesin, F1845, mediating diffuse adherence of
Escherichia coli associated with diarrheal disease in children. J. Infect. Dis. 159:
983–988.
1995. Etiology and epidemiology of persistent diarrhea in northeastern Bres-
ail: a hospital-based, prospective, case-control study. J. Pediatr. Gastroenter-
enteropathogenic, enteraggregative, and diffusely adherent Escherichia coli
among isolates from children with diarrhea in New Caledonia. J. Infect.
Dis. 174:1124–1126.
G. Frankel, S. L. Moseley, B. Baudry, J. B. Kaper, G. K. Schoolnik, and L. W.
Riley. 1991. Diffuse-adhering Escherichia coli (DAEC) as a putative
Diffuse and enteraggregative patterns of adherence of enteric Escherichia coli
from aboriginal children from the Kimberley region of Western Austra-
Escherichia coli strains involved in diarrhea in France: high prevalence and
tenteropathogenic Escherichia coli necessary for the production of attaching
and effacing lesions on tissue culture cells. Proc. Natl. Acad. Sci. USA 87:
7839–7843.
L. Maggi, M. M. Baldini, W. Martin, D. Maneval, B. Kay, L. Guers, H. Lior,
S. S. Wasserman, and J. P. Nataro. 1993. Epidemiological studies of
Escherichia coli diarrheal infections in a low socioeconomic level peri-urban
and S. Falkow. 1980. Detection of enterotoxigenic Escherichia coli by DNA