Two Different Extended-Spectrum β-Lactamases (ESBLs) in One of the First ESBL-Producing Salmonella Isolates in Poland

Anna Baraniak, Ewa Sadowy, Waleria Hryniewicz, and Marek Gniadkowski*

Sera & Vaccines Central Research Laboratory, Chelmska 30/34, 00-725 Warsaw, Poland

Received 31 October 2001/Returned for modification 24 December 2001/Accepted 17 January 2002

Two extended-spectrum β-lactamase (ESBL)-producing salmonella isolates, Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium, were analyzed. Both isolates produced the CTX-M-3 ESBL; however, their blaCTX-M-3 genes were located on different plasmids. The serovar Typhimurium isolate also expressed another ESBL, SHV-2a, and probably the two ESBL genes had been acquired independently by the strain.

Various types of extended-spectrum β-lactamases (ESBLs) constitute one of the major mechanisms of resistance of gram-negative bacteria to oxyimino-β-lactam antibiotics (10, 13, 17). In general they are most frequently identified in Klebsiella pneumoniae and Escherichia coli; however, more and more papers in recent years have documented their growing incidence in other organisms of the family Enterobacteriaceae, including Salmonella spp. (10, 17). Sporadic infections or nosocomial outbreaks caused by ESBL-producing salmonellae have been reported in numerous countries of Latin America, Africa, Asia, and Europe (4, 8, 18, 19). Salmonellae have been found to express a wide variety of ESBL types, including TEM, SHV, PER, and CTX-M enzymes (10, 13, 18). The situation is of particular concern because it demonstrates the danger of ESBL spread among pathogens circulating in livestock and the community (17).

Although frequently found in many entero bacterial species, ESBL had not been reported in Salmonella spp. in Poland until 1999. The two cefotaxime-resistant isolates analyzed in this work belong to the first ESBL-producing salmonellae identified in the country. They were recovered in 1999 and 2000 in two regional hospitals located in geographically distant cities (Table 1). Both strains were cultured from the stools of patients with diarrhea. Biochemical identification of the isolates was performed with the ATB ID32E test (bioMérieux sa, Marcy l’Etoile, France). Serogroups and serotypes with respect to somatic (O) and flagellar (H) antigens were determined in the Clinical Laboratory according to the NCCLS guidelines (14). Antimicrobial standards were supplied by the corresponding manufacturers. Both clinical isolates and their transconjugants revealed MIC patterns that are typical for ESBL-producing strains (13) (Table 2). They were characterized by raised MICs of a variety of β-lactams, except for cephalothin and imipenem, and β-lactamase inhibitors reduced effectively MICs of β-lactams in all combinations tested. Cefotaxime MICs were significantly higher than those of cephalaxime. Apart from β-lactams the clinical isolates were also resistant to aminoglycosides and cotrimoxazole, and resistance to these drugs was cotransferred with β-lactam resistance to the transconjugants.

β-Lactamases of the clinical isolates and their transconjugants were visualized by isoelectric focusing (IEF), and their cefotaxime-hydrolyzing activity was detected by the bioassay approach. IEF and the bioassay were performed as described by Pauflotto et al. (3), with the use of a Model 111 Mini Cell (Bio-Rad, Hercules, Calif.) for IEF. The concentration of cefotaxime in the bioassay was 2 μg/ml. Results of the analyses are shown in Table 1. Both isolates produced β-lactamases with isoelectric points (pIs) of 8.4 and 5.4, and these two enzymes were also found in extracts of the transconjugants. The serovar Typhimurium isolate, 9197, but not its transconjugant, expressed an additional β-lactamase with a pI of 7.6. Only enzymes with pIs of 8.4 and 7.6 demonstrated the cefotaxime-hydrolyzing activity under the conditions used in the bioassay.

Genes coding for the cefotaxime-hydrolyzing β-lactamases were detected by PCR in DNA of the clinical isolates. Both isolates were tested for the presence of blaCTX-M genes (supposed to encode the pI 8.4 enzymes), and DNA of serovar Typhimurium 9197 was also checked by PCR specific for a blaSHV gene (likely coding for the β-lactamase with a pI of 7.6). PCRs were run as reported previously (6, 11). Amplicons of the expected size of around 1 kb were obtained in all three

* Corresponding author. Mailing address: Sera & Vaccines Central Research Laboratory, ul. Chelmska 30/34, 00-725 Warsaw, Poland. Phone: (48) 22-851 46 70. Fax: (48) 22-841 29 49. E-mail: gniadkow@urania.il.waw.pl.
cases and subjected to sequencing using an ABI PRISM 310 sequencer (PE Biosystems, Foster City, Calif.). Sequencing was performed as previously described (1, 6, 11). The results are shown in Table 1. Coding regions of the two \(\text{bla}_{\text{CTX-M-3}} \) genes were identical to that of the \(\text{bla}_{\text{CTX-M-3}} \) gene (11), which indicated that the \(\beta \)-lactamase with a pI of 8.4 was CTX-M-3. The \(\text{bla}_{\text{SHV}} \) gene coding region was the same nucleotide sequence as in the originally reported \(\text{bla}_{\text{SHV-2a}} \) gene (16), and this revealed that the ESBL with a pI of 7.6 was SHV-2a.

Plasmid DNA was purified from the transconjugants with the use of the QIAGEN Plasmid Midi Kit (QIAGEN, Hilden, Germany) and subjected to the fingerprinting analysis along with all the variants of \(\text{bla}_{\text{CTX-M-3}} \) gene-carrying plasmids that had been identified before in *Enterobacteriaceae* isolates in Poland (1). The \(\\text{Pst} \) restriction fragment (MBI Fermentas, Vilnius, Lithuania) fingerprinting was performed as previously (11). Both transconjugants contained large plasmids (of around 90 to 110 kb) that produced different fingerprints (Table 1 and Fig. 1). The plasmid specific for serovar Enteritidis 33/01 had a fingerprint identical to that of the widely spread \(\text{bla}_{\text{CTX-M-3}} \) gene-carrying plasmid in Poland (variant A1) (1), whereas the molecule present in serovar Typhimurium 9197 demonstrated a unique \(\\text{Pst} \) restriction pattern.

With the two multiresistant serovar Typhimurium and serovar Enteritidis isolates analyzed here and an *S. enterica* serovar Mbandaka isolate reported elsewhere (21), Poland has joined the group of countries in which ESBL-producing salmonellae have been described. Both strains produced the CTX-M-3 enzyme, identified originally in 1996 in *Citrobacter freundii* isolates from a hospital in Warsaw (11). CTX-M \(\beta \)-lactamases have been relatively frequently found in ESBL-producing salmonellae, including CTX-M-2 in Argentina (2), CTX-M-4 in Russia (9), CTX-M-5 in Latvia (4), CTX-M-6 and -7 in Greece (8), and probably CTX-M-9 in Spain (19). The CTX-M-4 and -5-producing serovar Typhimurium strains caused clonal outbreaks in hospitals in St. Petersburg and Riga, respectively (4, 7, 22), and serovar Typhimurium strains related to those from St. Petersburg have been also observed in Hungary and Greece (22).

The CTX-M-3 \(\beta \)-lactamase is widely spread in Poland, having been identified in numerous strains of seven *Enterobacteriaceae* species in 16 medical centers throughout the country (1, 11, 15). The isolation of CTX-M-3-producing salmonellae strains in hospitals in Grajewo and Koszalin has extended the list by two more institutions. The \(\text{bla}_{\text{CTX-M-3}} \) gene-carrying plasmids of both isolates demonstrated a high transmission potential; moreover, one of these had been observed before in nine hospitals, which suggests its nosocomial origin (1, 11, 15). These data support the hypothesis that plasmid dissemination has been the major mechanism of the CTX-M-3 spread in Poland (1, 15). What is noteworthy is that these plasmids also contained a gene coding for another \(\beta \)-lactamase (likely TEM-1) and genes responsible for resistance to amino-glycosides and cotrimoxazole. One of the salmonella isolates, apart from CTX-M-3, also produced another ESBL variant, SHV-2a, which had previously never been identified in Poland. Genes coding for the two ESBLs have probably been acquired independently by the strain, as they were located on separate

Table 1. The salmonella isolates: date and place of isolation, \(\beta \)-lactamases profiles, \(\beta \)-lactamases expressed by transconjugants, cefotaxime-hydrolyzing activity assigned by the bioassay, ESBL sequences deduced from gene sequences, and plasmid fingerprints

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Date of isolation (day mo yr)</th>
<th>Location of hospital</th>
<th>(\beta)-Lactamases (pI values)(^a)</th>
<th>(\beta)-Lactamases in transconjugants (pI values)(^a)</th>
<th>ESBL(s)</th>
<th>(Pst) plasmid fingerprint(^b) (kb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serovar Typhimurium 9197</td>
<td>04 11 1999</td>
<td>Grajewo</td>
<td>8.4, 7.6, 5.4</td>
<td>8.4, 5.4</td>
<td>CTX-M-3, SHV-2a</td>
<td>E (~110)</td>
</tr>
<tr>
<td>Serovar Enteritidis 33/01</td>
<td>14 11 2000</td>
<td>Koszalin</td>
<td>8.4, 5.4</td>
<td>8.4, 5.4</td>
<td>CTX-M-3</td>
<td>A1 (~90)</td>
</tr>
</tbody>
</table>

\(^a\) pI values in bold indicate \(\beta \)-lactamases which were positive in the bioassay with cefotaxime as a substrate.

\(^b\) Plasmid fingerprint designations were applied according to reference 1.

Table 2. MICs of various antimicrobial agents obtained for the clinical isolates and their transconjugants

Strain\(^a\)	Ampicillin	Piperacillin + clavulanic acid	Ceftazidime	Cefotaxime	Ceftazidime + clavulanic acid	Aztreonam	Cefoxitin	Imipenem	Gentamicin	Tobramycin	Ciprofloxacin	Cotrimoxazole	Chloramphenicol			
Salmonella Typhim. 9197	>512	512	1	4	0.25	64	0.125	16	2	0.125	>256	>256	0.016	>64	4	
Salmonella Enteritr. 33/01	>512	>512	>1	1	0.5	128	0.25	32	2	0.125	>256	>256	0.016	>64	4	
R\(^+\) (Salmonella Typhim. 9197)	>512	128	1	1	0.125	8	≤0.03	4	2	0.125	>256	128	0.25	16	4	
R\(^+\) (Salmonella Enteritr. 33/01)	>512	128	1	1	0.125	16	≤0.03	4	2	0.125	>256	128	0.25	16	4	
E. coli A15 nal	2	2	1	1	0.06	0.06	≤0.03	≤0.03	2	0.125	0.5	≤0.125	0.25	0.06	4	
E. coli ATCC 25922	4	4	2	1	0.125	0.125	0.06	≤0.03	0.125	2	0.06	1	0.5	0.008	0.125	4
S. choleraesuis ATCC 14028	≤1	4	2	1	0.125	0.125	≤0.03	0.06	2	0.125	1	0.5	0.03	0.06	4	

\(^a\) R\(^+\), transconjugant. Typhim., serovar Typhimurium; Enteritr., serovar Enteritidis.
We thank Krystyna Nowak for serotyping and Anna Klim, Bożena Ruszel, and Tadeusz Gadomski for collecting the isolates. We also thank Jolanta Krzyszton-Ruszel, and Tadeusz Gadomski for collecting the isolates. We also thank Jolanta Krzyszton-Ruszel, and Tadeusz Gadomski for collecting the isolates.

We thank Krystyna Nowak for serotyping and Anna Klim, Bożena Ruszel, and Tadeusz Gadomski for collecting the isolates. We also thank Jolanta Krzyszton-Ruszel, and Tadeusz Gadomski for collecting the isolates. We also thank Jolanta Krzyszton-Ruszel, and Tadeusz Gadomski for collecting the isolates.

DNA replicons. Such double-ESBL-producer strains, although occasionally reported (1, 5, 20), are rare, and to our knowledge they have not been observed in salmonella to date.

We thank Krystyna Nowak for serotyping and Anna Klim, Bożena Ruszel, and Tadeusz Gadomski for collecting the isolates. We also thank Jolanta Krzyszton-Ruszel and Kent Holding for helpful discussions and Agnieszka Mrożka for her excellent technical assistance.

REFERENCES

