Infections in International Pregnancy Study: Performance of the Optical Immunoassay Test for Detection of Group B Streptococcus

Jadsada Thinkhamrop,1* Sompop Limponsanurak,2 Mario R. Festin,3 Sean Daly,4 Anne Schuchat,5 Pisake Lumbiganon,1 Elizabeth Zell,6 Tsungai Chipato,7 Aye Aye Win,8 Mindy J. Perilla,5 Jorge E. Tolosa,9 and Cynthia G. Whitney5

Department of Obstetrics and Gynecology, Faculty of Medicine, Khon Kaen University, Khon Kaen,1 and Department of Obstetrics and Gynecology, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok,2 Thailand; Department of Clinical Epidemiology, University of the Philippines, Manila, The Philippines3; Coombe Women’s Hospital, Dublin, Ireland4; Respiratory Diseases Branch5 and Biostatistics and Information Management Branch,6 Division of Bacterial and Mycotic Diseases, National Centers for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia; Department of Obstetrics and Gynaecology, University of Zimbabwe School of Medicine, Harare, Zimbabwe7; Department of Obstetrics and Gynecology, Institute of Medicine, Yangon, Myanmar8; and Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, Pennsylvania9

Received 28 February 2003/Returned for modification 16 April 2003/Accepted 27 August 2003

We evaluated the Strep B optical immunoassay (OIA; ThermoBiostar, Inc.) for detecting light and heavy group B streptococcus colonization in 1,306 pregnant women. The women were examined at 20 to 32 weeks gestation and were from six countries. Compared to culture, the sensitivity and specificity of OIA were 13.3 and 98.4%, respectively, for light colonization and 41.5 and 97.7%, respectively, for heavy colonization.

Heavy colonization with group B streptococcus (GBS) may place women at high risk of delivering preterm, low-birth-weight infants (10, 11, 15). Earlier recognition of such high-risk women would be useful for intervention strategies. Detection of heavy colonization has traditionally relied on culture methods, which may not be feasible in some health care settings and require 1 to 3 days before results are available. Unfortunately, most rapid GBS tests have poor sensitivity (7, 13). The Strep B optical immunoassay (OIA; ThermoBiostar, Inc., Louisville, Colo.) is a rapid method which may have higher sensitivity for dense GBS colonization (14). We evaluated the performance of this test in an international, multicenter study.

We conducted the study at institutions participating in the Global Network for Perinatal and Reproductive Health (http://www.tju.edu/obgyn/rih/global.cfm). Centers were located in Khon Kaen and Bangkok, Thailand; Manila, The Philippines; Harare, Zimbabwe; Yangon, Myanmar; Dublin, Ireland; and Philadelphia, Pennsylvania. Participants were enrolled in the study between June 1999 and May 2001. Women attending prenatal care clinics and at 20 to 32 weeks gestation were eligible. Exclusion criteria included vaginitis symptoms, fever, vaginal bleeding, multiple pregnancy, use of antibiotics in the past 2 weeks, and active labor. Informed consent was obtained. The study was approved by institutional review boards at all study centers and supporting institutions.

At enrollment, study personnel conducted an interview and collected specimens. A sample for GBS rapid testing was collected from the cervix and lower vagina using a ThermoBiostar swab. OIAs were read by study site laboratory personnel and by the manufacturer’s laboratory personnel. OIA kits and swabs were supplied by ThermoBiostar.

Methods for GBS culture and quantitation replicated those used in the Vaginal Infections and Prematurity Study (16). After collection of the OIA specimen, a Dacron swab (Copan swab) was used to collect a specimen from the cervix and lower vagina. Samples were streaked onto blood agar plates using the four-quadrant method and then placed into Lim broth (Todd-Hewitt broth containing selective antimicrobial agents). A clean catch urine specimen was collected for GBS culture on blood agar. Suspect colonies showing β-hemolysis were identified as GBS using latex agglutination. Heavy colonization was defined as isolation of GBS from either urine or direct plating on blood agar. Light colonization was defined as isolation of GBS from Lim broth alone. Dense GBS colonization was defined as growth in the third or fourth quadrant streaked on the blood agar plate (14).

Data were entered by using Epi-Info version 6 (9) and transmitted to the Centers for Disease Control and Prevention monthly. We calculated the sensitivity, specificity, positive predictive value, and negative predictive value of the OIA using culture results as the “gold standard.” The chi-square test was used to compare the results of OIA readings done by the manufacturer’s staff versus the readings done by study center personnel.

We enrolled 1,306 women; their mean age was 26.6 years, and the mean gestational age was 26.3 weeks. GBS colonization was the highest in Philadelphia, Pa. (22.1%) and lowest in Yangon, Myanmar (7.1%). The rate of GBS isolation was higher from Lim broth culture than from other methods (Table 1).

Compared to culture, the sensitivity of OIA for detecting
any GBS colonization was 25.7% (95% confidence interval [CI], 19.0 to 33.6%) and ranged from 6.3% (95% CI, 0.3 to 32.3%) in Yangon, Myanmar, to 53.3% (95% CI, 27.4 to 77.7%) in Philadelphia, Pa. OIA sensitivity was 13.3% for lightly colonized women, 41.5% for heavily colonized women, and 68.4% for densely colonized women (Table 2). OIA sensitivity and specificity were 50.0 and 97.6%, respectively, compared with culture on blood agar and 26.8 and 98.4% compared with Lim brot. The OIA was positive in 1.4% of women who were negative by all culture methods. OIA test readings performed by the manufacturer and by study site personnel were similar (kappa of 0.701); the sensitivities from study site personnel and manufacturer readings was 29.7% (95% CI, 22.5 to 37.9%) and 25.7% (95% CI, 19.0 to 33.6%), respectively.

Our study demonstrated that the sensitivity of OIA to detect GBS colonization was lower than that of culture was low, although the sensitivity of OIA in detecting heavy or dense colonization was higher than its sensitivity for detecting light colonization. Our findings confirm earlier work that found reliance on blood agar alone was insensitive for detecting light colonization and that comparing rapid detection methods with blood agar alone falsely elevated the sensitivity of these tests. Enrichment broth media, such as Lim brot, enhance GBS growth while suppressing growth of other bacteria, thus improving identification in specimens with low bacterial inoculum (3, 6).

In previous studies, the performance of the OIA has been compared with selective broth media. The specificity was uniformly high, 85 to 98%, similar to the 98.4% in our study. Conversely, previously reported test sensitivities varied widely but were generally higher (37 to 81%) (2, 5, 7, 12–14, 17–19) than the value we found (26.8%). The most important reason for this variability may be the extent to which the subjects were colonized. The sensitivity of the OIA has been higher (61 to 100%) when compared with third- and fourth-quadrant positive blood agar cultures (2, 5, 7, 12–14). Our finding was within this range (68.4%).

Our study had limitations, as it did not evaluate the performance of the OIA 4 to 5 weeks before delivery or at delivery, when it would have the most clinical value (8). However, the average gestational age for our participants was 26.3 weeks, a time when the fetus is considered viable in many centers, making our data potentially useful for evaluating the role of GBS in preterm birth. We did not collect specimens from the rectum; collecting both rectal and vaginal cultures increases the detection of GBS carriage in pregnant women (1). If we had collected rectal specimens, we would have identified more GBS carriers, and the OIA performance would have been worse.

In conclusion, the low sensitivity of the Strep B OIA may limit its usefulness for detecting GBS in pregnant women, although the best performance of the test is in women who are heavily colonized and who therefore may be at highest risk for complications due to GBS infection. New tests, such as the newly licensed PCR test, may provide other options (4). For now, culture of specimens from the rectum and lower vagina remain the gold standard for detecting GBS colonization in pregnant women (8).

This project was performed with the financial support of the Rockefeller Foundation; the Respiratory Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases; the Prevention Committee and the Office of Minority and Women’s Health, Centers for Disease Control and Prevention, Atlanta, Ga.; USAID; INCLEN; and Thomas Jefferson University.

We thank the Rockefeller Foundation; the Respiratory Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases; the Prevention Committee and the Office of Minority and Women’s Health, Centers for Disease Control and Prevention, Atlanta, Ga.; USAID; INCLEN; and Thomas Jefferson University for technical support on this project. In addition, we thank ThermoBiostar, Inc., for supplying the OIA kits and for technical support for this study.

Support for this study was provided by the Rockefeller Foundation; the Respiratory Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases; the Prevention Committee and the Office of Minority and Women’s Health, Centers for Disease Control and Prevention, Atlanta, Ga.; USAID; INCLEN; and Thomas Jefferson University. In addition, we thank ThermoBiostar, Inc., for supplying the OIA kits and for technical support for this study.

J. Thinkhamrop, S. Limpongsanurak, M. Festin, S. Daly, A. Schuchat, P. Lumbiganon, E. Zell, T. Chipato, A. A. Win, M. J. Perilla, J. E. Tolosa, and C. G. Whitney are members of the Global Network for Perinatal and Reproductive Health (GNPRH), Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, Pa. GNPRH study centers and coinvestigators follow: Khon Kaen University (Khon Kaen, Thailand), Unchalee Tattawasart, Kaewjai Kham-suk, and Ladda Srboonreung; Chulalongkorn University (Bangkok, Thailand).

The four performance characteristics, sensitivity, specificity, and positive and negative predictive values, are all given as percentages. The 95% CIs are given in parentheses.

TABLE 1. Prevalence of GBS according to various culture methods and OIA by study center

<table>
<thead>
<tr>
<th>Study site (no. of samples)</th>
<th>Lim broth culture</th>
<th>Blood agar culture</th>
<th>Urine culture</th>
<th>OIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dublin, Ireland (203)</td>
<td>11.8</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Yangon, Myanmar (226)</td>
<td>7.1</td>
<td>0.4</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Manila, The Philippines (200)</td>
<td>6.0</td>
<td>0.0</td>
<td>2.5</td>
<td>5.0</td>
</tr>
<tr>
<td>Bangkok, Thailand (200)</td>
<td>12.0</td>
<td>3.0</td>
<td>3.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Khon Kaen, Thailand (200)</td>
<td>14.5</td>
<td>8.0</td>
<td>4.0</td>
<td>4.5</td>
</tr>
<tr>
<td>Harare, Zimbabwe (209)</td>
<td>11.7</td>
<td>5.3</td>
<td>4.9</td>
<td>7.7</td>
</tr>
<tr>
<td>All study sites (1,306)</td>
<td>10.9</td>
<td>4.0</td>
<td>3.5</td>
<td>4.3</td>
</tr>
</tbody>
</table>

a The GBS colonization levels were defined as follows: light, isolation of GBS from Lim broth alone; heavy, isolation of GBS from either urine or direct plating on blood agar; dense, growth in the third or fourth quadrant streaked on the blood agar plate (14).

TABLE 2. Diagnostic performance of OIA for detection of vaginal carriage of GBS compared to culture in women with light, heavy, and dense GBS colonization (n = 1,306)

<table>
<thead>
<tr>
<th>GBS colonization level</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Positive predictive value</th>
<th>Negative predictive value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>13.3 (7.1, 22.9)</td>
<td>98.4 (97.5, 99.0)</td>
<td>37.9 (21.3, 57.6)</td>
<td>94.1 (92.5, 95.3)</td>
</tr>
<tr>
<td>Heavy</td>
<td>41.5 (29.7, 54.4)</td>
<td>97.7 (96.6, 98.4)</td>
<td>48.2 (34.8, 61.8)</td>
<td>97.0 (95.8, 97.8)</td>
</tr>
<tr>
<td>Dense</td>
<td>68.4 (43.5, 86.4)</td>
<td>96.5 (95.2, 97.5)</td>
<td>24.5 (14.2, 38.6)</td>
<td>99.5 (98.8, 99.8)</td>
</tr>
</tbody>
</table>
Thailand), Sompop Limpongsanurak, Surasith Chaithonghwattana, Pongpun Nuthapisud, Suneeence Nin-gate, and Wanwadee Sripitak; Coombe Women’s Hospital (Dublin, Ireland), Amanda Cotter, Julie Grantham, and James Fagan; Institute of Medicine, Women’s Central Hospital (Yangon, Myanmar), Kyi Kyi Thinn, Win Win Maw, Cho Cho Oo, MarLar Win, Thuza Han, Mya Mya Aye, Tins Ohn Myat, and Katherine Ba-Thike; University of Zimbabwe (Harare, Zimbabwe), Alexio Mashi, Laina Chidede, Marshall Munjoma, Travor Nyamurera, and Evelyn Mudzviti; University of the Philippines (Manila, The Philippines), Guadalupe N. Villanueva, Maybelle Cagayan, Concepcion Ang, Francis Sarmiento, Daniel Morales, and Celerinda Padri- nao; Population Council (Bangkok, Thailand), Josephine Sauvarin, Christopher Elias, and Wasiraporn Suramaythangkoon; Centers for Disease Control and Prevention, Falgunee Parekh, Carolyn Wright, Richard Facklam, and John Elliott; Department of Obstetrics and Gynecology, University of Alabama at Birmingham, William Andrews, Martha Lyon, Sue Cliver, and Robert Goldenberg; Thomas Jefferson University, Catherine Farrell, Babu Cheku, Tracey James, Letitia Lee, Martha Lyon, Sue Cliver, and Robert Goldenberg; Thomas Jefferson University, Catherine Farrell, Babu Cheku, Tracey James, Letitia Lee, Michelle Di Vito, Michelle Pollino, Donald Jungkind, Jim Bondi, Vincenzo Berghella, Jay Goldberg, Ratana Komwilaisak, and Jennifer Culhane.

REFERENCES