Fatal Case of Toxic Shock-Like Syndrome Due to Group C Streptococcus Associated with Superantigen Exotoxin

Tony M. Korman,1* Anthony Boers,1 Travis M. Gooding,2 Nigel Curtis,2,3,4 and Kumar Visvanathan1,2,3,5

Department of Infectious Diseases, Monash Medical Centre, Clayton,1 and Murdoch Childrens Research Institute,2 Department of General Medicine, Royal Children’s Hospital,3 and Departments of Paediatrics3 and Medicine,4 Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia

Received 9 November 2003/Returned for modification 16 January 2004/Accepted 16 March 2004

Group C streptococci have been reported to cause invasive disease similar to that classically associated with group A streptococcus (GAS). We describe a fatal case of toxic shock-like syndrome due to Streptococcus equi subsp. zooepidemicus. The causative organism did not possess any known GAS superantigen exotoxin genes but did show evidence of superantigen production.

CASE REPORT

A 63-year-old man developed left thigh pain and swelling while on an airplane flight. Two hours later, he developed fever, rigors, and a rapidly progressing skin rash on his trunk and limbs. Two days earlier, after presenting with vertigo and vomiting, he had received an intramuscular injection of prochlorperazine into the left thigh for presumed acute labyrinthitis.

Treatment was commenced for presumed meningococcal sepsis with intravenous (i.v.) benzylpenicillin and ceftriaxone at his local hospital. A cranial computerized tomography scan showed no abnormalities. He was intubated for a reduced conscious state and transferred to the intensive care unit at our institution.

Examination revealed a temperature 39.5°C, a pulse of 120/min, a blood pressure of 100/60 mmHg, and a confluent erythematous skin rash on his trunk and limbs, with petechiae on his legs. His left thigh was tender, swollen, and erythematous. Hypotension developed requiring inotropic support, and there were no other clinical features of toxic shock syndrome (TSS).

Initial investigations revealed a leukocyte count of 5.1 × 10^9/liter (61% neutrophils, 18% band neutrophils) and a platelet count of 25 × 10^9/liter; the blood film showed neutrophilia with a left shift and toxic granulations. The C-reactive protein level was 194 mg/liter (normal range, 2.5 to 9.6 mg/liter), creatine kinase was 12.8 mmol/liter (normal range, 2.5 to 9.6 mmol/liter), and lactate was 5.8 mmol/liter (normal range, 0.5 to 2.0 mmol/liter). Calcium was 1.84 mmol/liter (normal range, 2.2 to 2.6 mmol/liter), and lactate was 9.2 mmol/liter (normal range, 0.5 to 2.0 mmol/liter). Creatine kinase was 14,790 U/liter (normal range, 7 to 56 U/liter); albumin, 19 g/liter (normal range, 35 to 45 g/liter). He had a coagulopathy; activated partial thromboplastin time, 41 s (normal range, 23 to 34 s); fibrinogen, 6.0 g/liter (normal range, 1.5 to 4.0 g/liter); D-dimer, 6.7 mg/liter (normal range, <0.20 mg/liter).

An ultrasound scan revealed generalized edema of the anterolateral musculature of the left thigh with no abscess. At operation, there was marked subcutaneous and muscle edema but no obvious necrosis. Biopsies demonstrated muscle necrosis and gram-positive cocci. Treatment was continued for presumed group A streptococcus-associated soft-tissue infection and TSS with benzylpenicillin and clindamycin plus i.v. immunoglobulin (IVIG) at 1.5 g/kg.

Postoperatively, he had a persistent fever exceeding 40°C and developed progressive multisystem organ failure. Repeat hemoglobin was 7.9 g/dl, leukocytes were 26.0 × 10^9/liter, and platelets were 14 × 10^9/liter. He had circulatory failure, requiring high-dose i.v. adrenaline and noradrenaline infusions, and ventricular tachycardia, requiring cardioversion. A transcardiac echocardiogram revealed severe global hypokinesis with no evidence of endocarditis. Respiratory failure developed with increasing hypoxia and ventilatory requirements. Chest radiograph revealed bilateral diffuse pulmonary alveolar opacities. Anuric renal failure (serum creatinine, 402 μmol/liter; urea, 18 mmol/liter) required continuous venovenous hemodiafiltration. Liver dysfunction (bilirubin, 77 μmol/liter; alanine aminotransferase, 913 U/liter; albumin, 13 g/liter) and coagulopathy (international normalized ratio, 3.5) worsened. Despite maximal support, the patient died just over 48 h after arriving at our institution.

Microbiology. Streptococcus equi subsp. zooepidemicus sensitive to penicillin was isolated from multiple muscle biopsies and knee joint fluid and from one of six blood culture bottles taken on admission. 16S rRNA sequencing (results not shown) confirmed that the patient’s isolate had 100% sequence homology with S. equi subsp. zooepidemicus.

A fully characterized superantigen toxin-producing (including streptococcal pyrogenic exotoxin A) group A streptococcus (GAS) positive control strain and a non-toxin-producing group

* Corresponding author. Mailing address: Department of Infectious Diseases, Monash Medical Centre 246 Clayton Rd., Clayton, Victoria 3168, Australia. Phone: 61 3 9594 4563. Fax: 61 3 9594 4533. E-mail: tony.korman@med.monash.edu.au.
C streptococcus (GCS) negative control strain was obtained from clinical isolates. Bacterial strains were subcultured on horse blood agar plates at 37°C in 5% CO₂ before use to ensure viability and purity. Supernatants for proliferation experiments were prepared by inoculating individual colonies in 50 ml of nutrient broth (brain heart infusion) and culturing overnight with shaking at 37°C. Each bar represents the mean and standard deviation of three assays. Note the marked dose-dependent proliferation produced by the patient’s GCS and GAS supernatants compared to the negative controls.

FIG. 1. Proliferation of PBMCs after stimulation for 3 days with culture supernatants from a non-toxin-producing GCS negative control strain, the patient’s GCS isolate, and a toxin-producing GAS positive control strain. Each bar represents the mean and standard deviation of three assays. Note the marked dose-dependent proliferation produced by the patient’s GCS and GAS supernatants compared to the negative controls.
<table>
<thead>
<tr>
<th>Case no. (reference)</th>
<th>Age (yr)/ sex</th>
<th>Causative species</th>
<th>Site(s) of culture</th>
<th>Underlying conditions</th>
<th>Clinical features</th>
<th>Complications</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (14) 41/F</td>
<td>S. equisimilis</td>
<td>Blood, leg lesion</td>
<td>None</td>
<td>Hemodynamic shock, confusion, necrotizing fasciitis</td>
<td>Thrombocytopenia, raised transaminase, hypocalcemia</td>
<td>Penicillin</td>
<td>Recovery</td>
<td></td>
</tr>
<tr>
<td>2 (16) 46/M</td>
<td>GCS</td>
<td>Blood, throat</td>
<td>None</td>
<td>Hypotension, myalgia, macular rash</td>
<td>Thrombocytopenia, renal impairment, raised transaminase and CK<sup>a</sup> cardiac failure</td>
<td>Ampicillin, teicoplanin, amikacin</td>
<td>Recovery</td>
<td></td>
</tr>
<tr>
<td>3 (10) 54/M</td>
<td>Large-colony-forming GCS</td>
<td>Blood, thigh blister</td>
<td>Liver cirrhosis, hepatoma</td>
<td>Leg pain and swelling, acute brain syndrome, hypotension</td>
<td>Thrombocytopenia, raised transaminase and CK, hypocalcemia, renal impairment</td>
<td>Inotropes</td>
<td>Death in 4 h</td>
<td></td>
</tr>
<tr>
<td>4 (18) 22/M</td>
<td>GCS</td>
<td>Blood</td>
<td>None</td>
<td>Pyomyositis, myonecrosis</td>
<td>Thrombocytopenia, coagulopathy, raised transaminase and CK, ARDS<sup>b</sup></td>
<td>Penicillin, gentamicin, IVIG</td>
<td>Recovery</td>
<td></td>
</tr>
<tr>
<td>5 (PR)<sup>c</sup> 63/M</td>
<td>S. equi subsp. zooepidemicus</td>
<td>Blood, thigh muscle, knee joint fluid</td>
<td>None</td>
<td>Myositis, hemodynamic shock</td>
<td>Thrombocytopenia, coagulopathy, renal impairment, raised transaminase and CK, cardiac failure</td>
<td>Penicillin, clindamycin, ceftriaxone, IVIG</td>
<td>Death in 48 h</td>
<td></td>
</tr>
</tbody>
</table>

^aF, female; M, male.
^bCK, creatine phosphokinase.
^cARDS, acute respiratory distress syndrome.
^dPR, present report.
with septicemia were shown to be identical to strains from local pigs in Hong Kong (25). Although S. equi subsp. zooepidemicus equi has over 92% DNA homology with S. equi subsp. equi, they have very different biological behaviors in the horse. S. equi subsp. zooepidemicus is a commensal of the horse nasopharynx and external genitalia but can cause wound, respiratory, and uterine infections in susceptible horses. In contrast, S. equi subsp. equi causes strangles, a highly contagious and invasive respiratory disease, in young horses (9).

Anzai et al. demonstrated that supernatants of equine clinical isolates of S. equi subsp. equi, but not of S. equi subsp. zooepidemicus, elicited potent mitogenic responses from PBMCs (1). Artiushin et al. detected mitogen responses and sepe-I and sepe-H genes encoding pyrogenic mitogens in S. equi subsp. equi, but not S. equi subsp. zooepidemicus, equine isolates (2). Sachse et al. detected speG in 15 of 24 human clinical isolates of S. dysgalactiae subsp. equisimilis belonging to GCS and GGS (21). Profi et al. recently identified two novel streptococcal superantigen genes (speLse and speMSe) from the S. equi genome database, which were detected in clinical S. pyogenes isolates but not in eight S. equi isolates analyzed (20).

We did not detect the genes encoding GAS SPEs in the S. equi subsp. zooepidemicus isolated from this case of toxic shock-like syndrome. However, it is not clear that all of the genes encoding SPEs in the GAS genomes have been identified. The ability to stimulate PBMC proliferation is the most sensitive test of superantigen activity. The degree of mitogenic activity detected in the supernatant from the organism from our patient was characteristic of superantigen activity in an assay specifically developed and validated to distinguish superantigen from conventional antigen activity. This strongly suggests the presence of an unidentified novel superantigen exotoxin produced by S. equi subsp. zooepidemicus that could be implicated in the pathogenesis of the fatal infection in our patient.

The overall mortality rate due to GAS TSS remains high. Our patient died despite treatment with surgery, penicillin, clindamycin, and IVIG. Penicillin remains the treatment of choice for GAS and GCS infections, but the addition of clindamycin provided greater efficacy in experimental and retrospective clinical series of GAS TSS. Early aggressive surgical exploration and debridement of a suspected deep-seated infection are essential components of treatment. IVIG therapy enhances the ability of patient plasma to inhibit bacterial mitogenicity, reduces T-cell production of proinflammatory cytokines, and improved survival in GAS TSS studies. Therapy directed toward superantigens may be an efficient strategy against invasive infections due to GAS and other streptococci (23).

This fatal case of toxic shock-like syndrome due to S. equi subsp. zooepidemicus with evidence of superantigen toxin production highlights the need for further studies investigating the role of superantigen exotoxins in the pathogenesis of invasive disease due to GCS.

REFERENCES