Emergence of a Unique Multiply-Antibiotic-Resistant \textit{Streptococcus pneumoniae} Serotype 7B Clone in Dhaka, Bangladesh

\textit{Streptococcus pneumoniae} is a frequent cause of potentially life-threatening infections, such as pneumonia, meningitis, and bacteremia (14). However, the global emergence of antimicrobial resistance in \textit{S. pneumoniae} is a serious concern (4). Recent data from 12 Asian countries showed high resistance rates (17, 18). We studied prospective resistance to a large number of antimicrobial agents in pneumococcal isolates. We also analyzed macrolides resistance, with an emphasis on resistance genes, molecular epidemiology, and serotype patterns.

From 1999 to 2002, \textit{S. pneumoniae} isolates (n = 136) from blood and cerebrospinal fluid (CSF) (n = 60) and nasopharynx (n = 76) of children (<5 years) with pneumonia and meningitis from three hospitals in Dhaka, Bangladesh, were studied. MICs were determined by CLSI broth microdilution method (1) and by Etest (AB Biodisk, Solna, Sweden). Macrolide resistance phenotypes were determined by triple-disk test (11, 12) and macrolide resistance genotypes by a light cycler protocol (15). Isolates were serotyped by antisera (Statens Serum Institut, Copenhagen, Denmark). Multilocus sequence typing (MLST) was carried out (2), and two predominant sequence types (ST) were analyzed by use of the eBURST2 program (3).

MIC results for \textit{S. pneumoniae} (Table 1) showed high rates of resistance to sulfamethoxazole-trimethoprim (77.9%) and tetracycline (46.3%). The resistance rates of other drugs were low. The rates of multiply-resistant isolates were 27.9% and 11.7% against 2 and 3 classes of antibiotics, respectively. Six (4.4%) isolates (Table 2) were resistant to erythromycin A; five of them exhibited the partially inducible \textit{iMcLSB} phenotype (susceptible or intermediate to rokitamycin but developing no induction resistance to rokitamycin in the presence of erythromycin) and one strain the \textit{M} phenotype (resistant to erythromycin, azithromycin, and clarithromycin but susceptible to clindamycin and streptogramin B). Isolates with the \textit{iMcLSB} phenotype were positive for the \textit{erm}(B) gene, and the isolate displaying the \textit{M} phenotype was positive for \textit{mef}(A). Macrolide-resistant isolates were serotypes 7B (n = 4), 9V (n = 1), and 18C (n = 1). MLST results of serotype 7B macrolide-resistant strains established two sequence types: ST 1533 (strains 14, 39, and 94) and ST 1586 (strain 61). ST 1586 is a resistant strains established two sequence types: ST 1553 (strains 14, 39, and 94) and ST 1586 (strain 61). ST 1586 is a resistant strains established two sequence types: ST 1553 (strains 14, 39, and 94) and ST 1586 (strain 61). ST 1586 is a resistant strains established two sequence types: ST 1553 (strains 14, 39, and 94) and ST 1586 (strain 61). ST 1586 is a resistant strains established two sequence types: ST 1553 (strains 14, 39, and 94) and ST 1586 (strain 61). ST 1586 is a resistant strains established two sequence types: ST 1553 (strains 14, 39, and 94) and ST 1586 (strain 61). ST 1586 is a resistant strains established two sequence types: ST 1553 (strains 14, 39, and 94) and ST 1586 (strain 61). ST 1586 is a resistant strains established two sequence types: ST 1553 (strains 14, 39, and 94) and ST 1586 (strain 61). ST 1586 is a resistant strains established two sequence types: ST 1553 (strains 14, 39, and 94) and ST 1586 (strain 61). ST 1586 is a resistant strains established two sequence types: ST 1553 (strains 14, 39, and 94) and ST 1586 (strain 61). ST 1586 is a resistant strains established two sequence types: ST 1553 (strains 14, 39, and 94) and ST 1586 (strain 61). ST 1586 is a resistant strains established two sequence types: ST 1553 (strains 14, 39, and 94) and ST 1586 (strain 61). ST 1586 is a resistant strains established two sequence types: ST 1553 (strains 14, 39, and 94) and ST 1586 (strain 61). ST 1586 is a resistant strains established two sequence types: ST 1553 (strains 14, 39, and 94) and ST 1586 (strain 61). ST 1586 is a resistant strains established two sequence types: ST 1553 (strains 14, 39, and 94) and ST 1586 (strain 61). ST 1586 is a resistant strains established two sequence types: ST 1553 (strains 14, 39, and 94) and ST 1586 (strain 61).

Our study highlights a high level of tetracycline and sulfamethoxazole-trimethoprim resistance in Bangladesh. There is increasing concern over resistance in pneumococci to sulfa-methoxazole-trimethoprim, which is recommended by the WHO as a first-line drug for treating nonsevere pneumonia. Our study supports the view that this recommendation may not be optimal for Bangladesh; however, changing to alternative agents, such as amoxicillin, is costly (http://www.who.int/child-adolescent-health/publications/referral_care/chap3/chap31.htm). Moreover, the widespread use of sulfa-methoxazole-trimethoprim may further drive the spread of multiply-resistant pneumococcal clones and
may also select resistance to penicillin G, chloramphenicol, and macrolides. Our observation of a high level of resistance to sulfamethoxazole-trimethoprim in Bangladesh is consistent with findings from the mid-1990s (16). In contrast, the rates of resistance to penicillin G, macrolides, and other drugs are relatively low compared to those described in recent reports from other Asian countries, except India (8, 17, 18). Multiply-resistant *S. pneumoniae* is a problem in Bangladesh. Although an increasing trend of fluoroquinolone resistance has been reported in Hong Kong, Spain, and Canada (7, 9), a low rate (2.9%) of ciprofloxacin resistance was observed in our study. However, gatifloxacin and moxifloxacin remained active in vitro, indicating their potential utility in Bangladesh.

The predominance of the MLSB phenotype (resistance to all macrolides, lincosamides, and streptogramin B)/erm(B) genotype in our study is consistent with recent findings from Sri Lanka, Korea, China, Taiwan, Japan, Spain, Italy, France, and South Africa (6, 9, 15, 17). All strains with the MLSB phenotype exhibited a partially macrolide-inducible (M*LS*B) phenotype, i.e., they were susceptible or had intermediate resistance to rokitamycin and had no resistance induction to rokitamycin in the presence of erythromycin (13). This phenotype is the most common mechanism of macrolide resistance in Bangladesh, although the sample size is small. Of note, the majority of macrolide-resistant strains belong to a single serotype, 7B. Serotype 7B infections were recorded only in India in the late 1990s (5). Three 7B isolates and the 9V variant have the same sequence type, ST 1553, and form a clonal complex. In addition, one 7B isolate is a single-locus (*aroE*) variant (ST 1586) of ST 1553. Of note, ST 1553 and ST 1586 are not closely related to any other clone in the MLST database, as shown by eBURST analysis. The strain exhibiting a *mef* genotype belongs to ST 113. Strains of this clone (global clone 36 of the Pneumococcal Molecular Epidemiology Network [http://www.mlst.net; http://www.sph.emory.edu/PMEN]) (10) are serotype 18C and were isolated from meningitis in The Netherlands, the United Kingdom, and Spain in the 1980s and 1990s. Interestingly, the present report is the first to document macrolide resistance in an isolate of this particular clone.

In summary, our report shows that resistance to beta-lactams, macrolides, and fluoroquinolones in pneumococci is not as yet a serious problem in Bangladesh, unlike in many other Asian countries. However, the emergence of a unique multiply-resistant serotype 7B clone reiterates the need for continual surveillance of antimicrobial resistance in pneumococci.

This research protocol was funded by USAID (Washington, D.C.) grant number 00097 and by a visiting scientist grant from the German National Reference Center for Streptococci. ICDDR,B acknowledges with gratitude the commitment of USAID and the German National Reference Center for Streptococci to the Center’s research efforts.

REFERENCES

Mahbubur Rahman*
Shahadat Hossain
Shereen Shoma
Harunur Rashid
ICDDR,B: Centre for Health and Population Research, Bangladesh
GPO Box 128
Dhaka 1000, Bangladesh

Abdullah Hel Baqui
The Johns Hopkins University School of Hygiene and Public Health
Baltimore, Maryland

Mark van der Linden
Adnan Al-Lahham
Ralf René Reinert
Institute of Medical Microbiology
National Reference Center for Streptococci
University Hospital, RWTH
D-52057 Aachen, Germany

*Phone: (880 2) 8660524
Fax: (880 2) 8812529
E-mail: mahbubur@icddrb.org

*Published ahead of print on 27 September 2006.