Etiologic Diagnosis of Adult Bacterial Pneumonia by Culture and PCR Applied to Respiratory Tract Samples

Kristoffer Strålin,¹* Eva Törnqvist, ² Margit Stuaa Kartoft, ³ Per Olcén, ² and Hans Holmberg ¹

Departments of Infectious Diseases ¹ and Clinical Microbiology, ² Örebro University Hospital, Örebro, Sweden, and
Streptococcus Unit, Division of Microbiology and Diagnostics, Statens Serum Institut, Copenhagen, Denmark ³

Received 8 September 2005/Accepted 8 November 2005

Respiratory culture and multiplex PCR for Streptococcus pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae, and Chlamydia pneumoniae were applied to sputum, nasopharyngeal swabs, and nasopharyngeal aspirates from 235 adult patients with community-acquired pneumonia and 113 controls. Both culture and multiplex PCR performed well with the different samples and appear to be useful as diagnostic tools.

As an etiologic agent can rarely be identified in more than 50% of patients with community-acquired pneumonia (CAP) (9), further development of diagnostic methods has been encouraged (4, 10).

The aim of the present study was to estimate the diagnostic accuracy of respiratory culture and a single-run multiplex PCR (mPCR) for specific genes of Streptococcus pneumoniae (sipA), Haemophilus influenzae (16S rRNA, with verification by PCR for P6), Mycoplasma pneumoniae (P1), and Chlamydia pneumoniae (ompA) (12) applied to respiratory samples in CAP patients.

(The study was approved by the ethics committee of the Örebro County Council [866-1999; 556-2000].)

In a prospective study described previously (14), 235 hospitalized CAP patients with X-ray infiltrates were enrolled. Their median age was 71 years (age range, 18 to 96 years), 40% belonged to severity risk classes IV and V, 14% had chronic obstructive pulmonary disease, and 22% were smokers. In 82% of the patients, the interval from the onset of illness to admission was 0 to 7 days.

During the study period, 113 adult controls (median age, 69 years) without respiratory symptoms were enrolled. They were hospitalized for skin infection (n = 14), urinary tract infection (n = 14), arthritis or spondylitis (n = 6), or planned orthopedic or urological surgery (n = 79).

The results of the respiratory cultures and mPCR analyses performed with specimens from the patients and the controls are shown in Table 1. Sputum samples were analyzed if there were more than five leukocytes per squamous epithelial cell (6). To obtain a nasopharyngeal aspirate (NpA), secretions from the nasopharynx were aspirated by a catheter connected to an electronic suction device. About 1 ml NaCl (0.85%) was then aspirated to collect the secretions situated within the catheter. Culture and mPCR of sputum, nasopharyngeal swabs (NpSs), and NpAs were performed as described previously (12). Multiplex PCR was performed blindly with samples previously frozen at −70°C.

To establish the definite etiologies of CAP, we performed the following: blood culture for 235 patients, the NOW S. pneumoniae urinary antigen test (Binax) for 215 patients, the complement fixation test for M. pneumoniae (8) with paired serum specimens for 216 patients, the microimmunofluorescence test for C. pneumoniae (3) with paired serum specimens for 216 patients, and the indirect immunofluorescence test for H. influenzae (13) with paired serum specimens for 48 patients.

Our criteria for definite CAP etiologies were as follows: for S. pneumoniae, a positive blood culture or a positive urinary antigen test (only visible result lines at least as intense as the control line were considered positive; other results were considered negative) (14); for H. influenzae, a positive blood culture or a positive indirect immunofluorescence test, i.e., a fourfold or greater rise in the immunoglobulin G (IgG) antibody titer against the patient’s own H. influenzae isolate (13); for M. pneumoniae, a positive complement fixation test result, i.e., a fourfold or greater rise in the antibody titer; and for C. pneumoniae, a positive microimmunofluorescence test result, i.e., a fourfold or greater rise in the IgG antibody titer or an IgM titer ≥1/16.

The pathogens for which tests were performed were established as the definite etiologic agents in 79 (34%) of the 235 CAP patients, i.e., S. pneumoniae in 39 patients (17%), H. influenzae in 25 patients (9.8%), M. pneumoniae in 13 patients (5.5%), C. pneumoniae in 2 patients (0.9%), both S. pneumoniae and H. influenzae in 1 patient (0.4%), and both H. influenzae and C. pneumoniae in 1 patient (0.4%).

Tables 2 and 3 show the sensitivities and the specificities of the respiratory cultures and mPCR analyses.

In the specificity calculations, our criteria for the exclusion of pathogens as etiologic agents were as follows: for S. pneumoniae, a negative blood culture plus a negative urinary antigen test result; for M. pneumoniae, a negative complement fixation test result with paired serum specimens; and for C. pneumoniae, a negative microimmunofluorescence test result with paired serum specimens. No diagnostic method was available to rule out H. influenzae as the etiologic agent, as the indirect immunofluorescence test could be performed only for culture-positive patients. Thus, no specificity could be calculated. However, among the 54 CAP patients with definite etiologies other than H. influenzae, this pathogen was identified by the culture of sputum for 0% of the patients (0 of 28). NpSs
TABLE 1. Analyses of respiratory tract secretions for *Streptococcus pneumoniae*, *Haemophilus influenzae*, *Mycoplasma pneumoniae*, and *Chlamydia pneumoniae* in 235 patients with CAP and 113 controls

<table>
<thead>
<tr>
<th>Test</th>
<th>CAP patients</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. pneumoniae</td>
<td>H. influenzae</td>
</tr>
<tr>
<td>No. of samples with which test was performed</td>
<td>112</td>
<td>36</td>
</tr>
<tr>
<td>Sputum culture</td>
<td>103</td>
<td>55</td>
</tr>
<tr>
<td>Nasopharyngeal swab mPCR</td>
<td>194</td>
<td>35</td>
</tr>
<tr>
<td>Nasopharyngeal swab culture</td>
<td>220</td>
<td>63</td>
</tr>
<tr>
<td>Nasopharyngeal aspirate culture</td>
<td>218</td>
<td>79</td>
</tr>
</tbody>
</table>

* An empty space indicates that the analysis was not performed.

for 3.8% of the patients (2 of 53), and NpAs for 4.3% of the patients (2 of 47) and by mPCR of sputum for 7.7% of the patients (2 of 26), NpSs for 4.3% of the patients (2 of 47), and NpAs for 8.5% of the patients (4 of 47). These results indicate that the tests for *H. influenzae* had high specificities.

The usefulness of respiratory culture and mPCR was further supported by the low frequencies of pathogens identified in the control group (Table 1).

Sputum remains the respiratory sample of choice for establishment of the etiology of CAP, as it is well studied for the identification of both typical (1) and atypical (2, 7, 11) bacteria. However, the present study indicates that when sputum is unobtainable, NpSs or NpAs could be used for diagnostic testing. NpAs appear to be more useful than NpSs for establishment of the etiology of CAP, as NpAs generally showed higher sensitivities and as NpSs and sputum samples performed similarly. Among 99 patients for whom both sputum samples and NpAs were analyzed, the two samples gave identical results for *S. pneumoniae* for 88% of the patients (n = 87) by culture and for 85% of the patients (n = 84) by mPCR, and the two samples gave identical results for *H. influenzae* for 92% of the patients (n = 91) by culture and for 86% of the patients (n = 85) by mPCR. However, NpSs displayed higher specificities than NpAs for *S. pneumoniae*, and NpS culture has previously been found to be specific for pneumococcal pneumonia (5). Thus, if a high specificity for *S. pneumoniae* is mainly sought, NpSs should reasonably be preferable to NpAs.

In patients not treated with antibiotics, culture and mPCR had similar yields for *S. pneumoniae* and *H. influenzae* (Table 2). Antibiotics were taken prior to the collection of one or more respiratory samples in 66 CAP patients. In total, 138 respiratory samples were collected during antibiotic treatment, and there was no difference between the results of culture and mPCR for the identification of *H. influenzae*, while *S. pneumoniae* was identified by culture in 4.3% of the patients (n = 6) and by mPCR in 14% of the patients (n = 20) (P = 0.004, chi-square test). During antibiotic treatment in a previous study (15), PCR for *S. pneumoniae* with sputum often remained positive, while sputum culture became negative. Another major advantage of mPCR compared with culture in antibiotic-treated patients is its ability to identify *M. pneumoniae* and *C. pneumoniae*, as an atypical etiology may be a reason for a nonresponse to first-line CAP treatment.

Since the four pathogens identified by mPCR are common etiologic agents of CAP (9) and since the sensitivities of mPCR were moderate to high, negative mPCR results may be used to

TABLE 2. Performance of culture and mPCR for *Streptococcus pneumoniae* and *Haemophilus influenzae* for pneumonia patients without ongoing antibiotic treatment

<table>
<thead>
<tr>
<th>Test</th>
<th>Sensitivity<sup>a</sup></th>
<th>Specificity<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sputum culture</td>
<td>86 (12/14)</td>
<td>66 (42/64)</td>
</tr>
<tr>
<td>Sputum mPCR</td>
<td>92 (12/13)</td>
<td>42 (24/57)</td>
</tr>
<tr>
<td>Nasopharyngeal swab culture</td>
<td>58 (19/33)</td>
<td>82 (107/130)</td>
</tr>
<tr>
<td>Nasopharyngeal swab mPCR</td>
<td>61 (19/31)</td>
<td>87 (89/102)</td>
</tr>
<tr>
<td>Nasopharyngeal aspirate culture</td>
<td>85 (23/27)</td>
<td>74 (89/121)</td>
</tr>
<tr>
<td>Nasopharyngeal aspirate mPCR</td>
<td>93 (25/27)</td>
<td>66 (79/119)</td>
</tr>
</tbody>
</table>

^a Reported as percent (number of positive samples/number of samples with the definite etiology).

^b Reported as percent (number of negative samples/number of samples without the etiology).

TABLE 3. Performance of mPCR for *Mycoplasma pneumoniae* and *Chlamydia pneumoniae* in pneumonia patients without ongoing treatment with fluoroquinolones, macrolides, or tetracyclines

<table>
<thead>
<tr>
<th>Sample type</th>
<th>M. pneumoniae</th>
<th>C. pneumoniae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sputum</td>
<td>88 (7/8)</td>
<td>93 (81/87)</td>
</tr>
<tr>
<td>Nasopharyngeal swab</td>
<td>67 (6/9)</td>
<td>96 (151/158)</td>
</tr>
<tr>
<td>Nasopharyngeal aspirate</td>
<td>90 (9/10)</td>
<td>97 (175/180)</td>
</tr>
</tbody>
</table>

^a Reported as percent (number of positive samples/number of samples with the definite etiology).

^b Reported as percent (number of negative samples/number of samples without the etiology).
rule out these etiologies. When mPCR is positive for a single pathogen, the negative results for the other three pathogens increase the likelihood that the positive result is truly positive.

Based on the present results, we suggest that respiratory culture and mPCR applied to sputum, NpSs, and NpAs can be used to obtain presumptive diagnoses of the etiology of CAP in adult populations with expectedly low rates of carriage of respiratory pathogens. These presumptive diagnoses can guide antibiotic therapy and support treatment with narrow-spectrum antibiotics.

This study was supported by grants from the Research Committee of Örebro County Council and the Örebro University Hospital Research Foundation.

We thank Birgitta Ekström for skillful technical assistance.

REFERENCES