Isolation of *Corynebacterium xerosis* from Animal Clinical Specimens

A. I. Vela,1 E. Gracia,2 A. Fernández,2 L. Domínguez,1 and J. F. Fernández-Garayzábal1*

Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain,1 and Laboratorio Exopol, Polígono del Río Gallego D/8, 50840 San Mateo, Zaragoza, Spain2

Received 30 November 2005/Returned for modification 13 February 2006/Accepted 26 March 2006

This article describes the first identification of *Corynebacterium xerosis* from animal clinical specimens, which was confirmed by microbiological and molecular genetic (16S rRNA gene sequencing) methods.

*Corynebacterium xerosis* is considered a commensal microorganism of human skin and mucous membranes. There are a limited number of reports associating *C. xerosis* with different human infections (1, 6), but it has been demonstrated that most of the *C. xerosis* isolates identified in the routine clinical laboratory represent *Corynebacterium amycolatum* strains (5, 6). Therefore, true human clinical isolates of *C. xerosis* are extremely rare (8), and there are no reports of its isolation from animals. We report the isolation and biochemical and genetic identification of eight strains of *C. xerosis* from different animal clinical specimens.

The eight isolates identified in this study were recovered from different clinical specimens routinely submitted for microbiological diagnosis to the Exopol laboratory in Zaragoza, Spain. Clinical specimens were collected under aseptic conditions and cultured aerobically on Columbia sheep blood agar (Oxoid España, Madrid, Spain) for 24 to 48 h at 37°C. For all clinical specimens, *C. xerosis* was recovered in moderate to high numbers in pure culture or as the predominant isolate from normally sterile body locations. Details of the clinical isolates are given in Table 1. Although only eight isolates were biochemically and genetically identified, coryneform bacteria similar to isolates St33874, St34960, St38671, and St49327 (similar colony morphology on sheep blood agar plates and similar Gram stain morphology) were also recovered from other organs from the same animal or different animals in the same disease episode. Thus, coryneform bacteria similar to isolate St33874 were also recovered in pure culture from the liver, spleen, and kidney of the same animal and from the liver of a second pig. A coryneform bacterium similar to isolate St34960 was also recovered in pure culture from the liver of the same animal. A coryneform bacterium similar to St38671 was also isolated from the joint of another pig; in this case, *Mycoplasm hyosinoviae* was also detected by immunocytochemistry. Coryneform bacteria similar to isolate St49327 were also recovered in pure culture from the liver and kidney of the same animal.

Preliminary identification of the clinical isolates as *Corynebacterium* spp, was performed following standard procedures (4, 10). Further biochemical identification was achieved by using the commercial API Coryne (version 2.0) system (bioMérieux España S.A., Madrid, Spain) according to the manufacturer’s instructions. The lipophilic requirement was determined by growing the isolates on brain heart infusion agar supplemented with 1% Tween 80 and comparing them to isolates grown on brain heart infusion agar lacking lipid supplementation. Antimicrobial susceptibility was tested by the disk diffusion method on Mueller-Hinton agar (bioMérieux España S.A.) according to the protocol of the Clinical and Laboratory Standards Institute (CLSI; formerly NCCLS) (9). The 16S rRNA genes of the eight isolates were amplified by PCR and further sequenced to determine their genotypic identities (11). The determined sequences consisted of about 1,400 nucleotides and were compared with the sequences of other gram-positive and catalase-positive species available in the GenBank database by using the FASTA program (http://www.ebi.ac.uk/fasta33).

The eight isolates grew on sheep blood agar, forming small (1 to 2 mm in diameter after 48 h of incubation), dry, and rough colonies with a yellowish pigment. They consisted of gram-positive, nonmotile, non-spore-forming, catalase-positive, rod-shaped organisms that were tentatively identified as *Corynebacterium* spp. The isolates were nonhemolytic and non-lipophilic and gave two numerical profiles with the API Coryne system, i.e., 2110325 (St33874) and 3110325 (St33874, St34960, St36130, St38671, St49845, St49327, and St47126), that correspond to a doubtful discrimination between *Corynebacterium striatum* and *C. amycolatum*. The API Coryne database does not include *C. xerosis*, which can create misidentification when using this commercial identification system (5). The clinical isolates were able to produce acid from maltose and exhibited strong α-glucosidase activity, which are among the few biochemical test results that can differentiate *C. xerosis* from *C. striatum* and *C. amycolatum* (5, 6). Clinical isolates were susceptible to penicillin, ampicillin, amoxicillin-clavulanic acid, doxycycline, cefotiofur, cephalaxin, gentamicin, oxytetracycline, and enrofloxacin, which also agrees with previous data about the antimicrobial susceptibility of *C. xerosis*, whereas strains of *C. amycolatum* are typically resistant to most of these antibiotics (5).

Sequencing of the 16S rRNA gene is a very useful tool for the identification of unusual clinical isolates or those which cannot be identified easily by conventional phenotypic methods (2, 7, 12). The 16S rRNA gene analysis revealed that all isolates were genotypically identical, displaying 100% and

* Corresponding author. Mailing address: Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain. Phone: 34-913-943-716. Fax: 34-913-943-908. E-mail: garayzab@vet.ucm.es.
TABLE 1. Details of clinical isolates included in this study

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Yr of isolation</th>
<th>Animal origin</th>
<th>Organ</th>
<th>Clinical history of animal</th>
<th>Primary isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>St33874</td>
<td>2002</td>
<td>Pig</td>
<td>Lung</td>
<td>Suspected erysipelas</td>
<td>Predominant*</td>
</tr>
<tr>
<td>St34960</td>
<td>2002</td>
<td>Pig</td>
<td>Kidney</td>
<td>Respiratory problems</td>
<td>Pure culture</td>
</tr>
<tr>
<td>St36404</td>
<td>2003</td>
<td>Goat</td>
<td>Liver</td>
<td>Suspected paratuberculosis</td>
<td>Pure culture</td>
</tr>
<tr>
<td>St36130</td>
<td>2003</td>
<td>Pig</td>
<td>Skin</td>
<td>Subcutaneous abscess</td>
<td>Pure culture</td>
</tr>
<tr>
<td>St38671</td>
<td>2003</td>
<td>Pig</td>
<td>Joint</td>
<td>Arthritis</td>
<td>Pure culture</td>
</tr>
<tr>
<td>St49485</td>
<td>2005</td>
<td>Pig</td>
<td>Joint</td>
<td>Subcutaneous abscess</td>
<td>Pure culture</td>
</tr>
<tr>
<td>St49327</td>
<td>2005</td>
<td>Pig</td>
<td>Blood</td>
<td>Sudden death</td>
<td>Pure culture</td>
</tr>
<tr>
<td>St47126</td>
<td>2005</td>
<td>Pig</td>
<td>Joint</td>
<td>Arthritic abscess</td>
<td>Pure culture</td>
</tr>
</tbody>
</table>

* Recovered as the predominant isolate, together with Streptococcus suis. Mycoplasma hyopneumoniae was also detected by immunocytochemistry.

REFERENCES