We report a case of *Aspergillus tamarii* keratitis. Ocular injury was known to be a predisposing factor. Topical natamycin and econazole treatment and subsequent systemic ketoconazole treatment proved effective. The isolate was identified by morphological characteristics and sequence analysis as *A. tamarii*, a member of *Aspergillus* section Flavi not hitherto reported from keratomycosis.

CASE REPORT

A 32-year-old female from Coimbatore was presented to the Aravind Eye Hospital, Coimbatore, South India, on December 27, 2005, with complaints of pain, redness, and defective vision of a 4-day duration in the left eye. She indicated that she had suffered an ocular injury caused by an iron piece while hammering 4 days earlier. On examination, her uncorrected visual acuities in the right and left eyes were 6/9 (partial) and 1/2/60, respectively. An anterior segment examination of the left eye showed lid edema and conjunctival congestion. The cornea showed a hypopyon of 0.5 mm. The patient was admitted as an inpatient and advised to continue the same medications along with 2% econazole and 2% dextrose agar and incubated at 25°C. Based on the colony morphology and microscopic features of the isolate (Fig. 1 and 2). Colonies on malt extract agar plates and identified as *Aspergillus tamarii* Kita based on the colony morphology and microscopic features of the isolate (Fig. 1 and 2). Colonies on malt extract agar at room temperature attained diameters of 6.0 to 7.0 cm in 10 days, producing abundant conidial heads in dull yellowish brownish yellow. However, in contrast with those of typical wild *A. tamarii* isolates (Fig. 2A), some conidia of this isolate were globose to subglobose, 25 to 50 μm in diameter. The phialides were borne directly on the vesicle or on metulae (mostly on large heads). The conidia were globose to subglobose, 5 to 6.5 μm in diameter, and brownish yellow. However, in contrast with those of typical wild *A. tamarii* isolates (Fig. 2A), some conidia of this isolate were not ornamented with tubercules and warts but were smooth walled and hyaline (Fig. 2B). The isolate grew well at 37°C but was unable to grow at 42°C on malt extract agar medium.

For purposes of molecular identification, mycelia grown in liquid YPG medium (0.5% Bacto yeast extract, 0.5% Bacto peptone, 1% glucose) for 1 day were subjected to DNA isolation by a Masterpure yeast DNA purification kit (Epicenter Biotechnologies, Madison, WI) according to the manufacturer's instructions. The internal transcribed spacer (ITS) region of the rRNA gene complex, incorporating ITS 1, the 5.8S rRNA gene, and ITS 2, was amplified using primers ITS1 and ITS4 (26). A segment of the calmodulin gene was amplified using primers cmd5 and cmd6 as described by Hong et al. (12), while a segment of the β-tubulin gene was amplified using primers bT2a and bT2b (9). DNA sequences were determined using a BigDye Terminator v3.1 cycle sequencing kit.
(Applied Biosystems Inc., Foster City, CA) and an ABI 3100 DNA sequencer. Both strands of each fragment were sequenced. The resulting sequences were deposited in the GenBank database. Sequence analysis was carried out by a BLASTN similarity search (2) at the website of the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/blast/).

Table 1 lists A. tamarii sequences with complete homology to those of the case isolate. The ITS, tubulin, and calmodulin sequences of the case isolate proved to be completely identical to the corresponding sequences of A. tamarii strain NRRL 25565 (13).

Living cultures were deposited at the Department of Microbiology, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Coimbatore, India (strain number 2342/05), and at the Centraalbureau voor Schimmelcultures (CBS 121598).

Antifungal susceptibility testing. The Etest method (AB BIODISK, Solna, Sweden) for molds was applied for the determination of MICs of amphotericin B, fluconazole, itracona-
TABLE 1. GenBank sequences with 100% similarity to the ITS (EF525554), 18S-tubulin (EF525555), and calmodulin (EF525556) sequences of strain 2342/05

<table>
<thead>
<tr>
<th>Locus</th>
<th>GenBank accession no.</th>
<th>Species</th>
<th>Strain designation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITS</td>
<td>AB008420</td>
<td>A. tamarii</td>
<td>JCM2259</td>
<td>19</td>
</tr>
<tr>
<td>ITS</td>
<td>AF004932</td>
<td>A. tamarii</td>
<td>NRRL 26066</td>
<td>21</td>
</tr>
<tr>
<td>ITS</td>
<td>AF272579</td>
<td>A. tamarii</td>
<td>NRRL 26594</td>
<td>13</td>
</tr>
<tr>
<td>ITS</td>
<td>AF272576</td>
<td>A. tamarii</td>
<td>NRRL 25565</td>
<td>13</td>
</tr>
<tr>
<td>ITS</td>
<td>AF004929</td>
<td>A. tamarii</td>
<td>NRRL 20818</td>
<td>13</td>
</tr>
<tr>
<td>ITS</td>
<td>D84358</td>
<td>A. tamarii</td>
<td>A0754</td>
<td>16</td>
</tr>
<tr>
<td>ITS</td>
<td>AY373870</td>
<td>A. tamarii</td>
<td>SRRC 1088</td>
<td>11</td>
</tr>
<tr>
<td>ITS</td>
<td>AY213635</td>
<td>A. tamarii</td>
<td>UWF534</td>
<td>22</td>
</tr>
<tr>
<td>β-tubulin</td>
<td>AF255074</td>
<td>A. tamarii</td>
<td>NRRL 26594</td>
<td>13</td>
</tr>
<tr>
<td>β-tubulin</td>
<td>AF255071</td>
<td>A. tamarii</td>
<td>NRRL 25565</td>
<td>13</td>
</tr>
<tr>
<td>β-tubulin</td>
<td>AF255009</td>
<td>A. tamarii</td>
<td>NRRL 20818</td>
<td>13</td>
</tr>
<tr>
<td>Calmodulin</td>
<td>AF255033</td>
<td>A. tamarii</td>
<td>NRRL 25565</td>
<td>13</td>
</tr>
<tr>
<td>Calmodulin</td>
<td>AF255032</td>
<td>A. tamarii</td>
<td>NRRL 26594</td>
<td>13</td>
</tr>
</tbody>
</table>

Discussion. Corneal infections of fungal etiology are very common and represent 30% to 40% of all cases of culture-positive infectious keratitis. Combating fungal keratitis is of special importance in India, which harbors the largest agrarian population at risk for developing blindness due to the limited availability of antifungal drugs and the lack of response during therapy. Certain Aspergillus species, mainly Aspergillus flavus (23, 25), Aspergillus terreus (25), Aspergillus fumigatus (23, 25), and Aspergillus niger (4), have long been regarded as important pathogens in eye infections, especially keratitis. Other members of the genus less frequently occurring in keratitis include Aspergillus glaucus and Aspergillus ochraceus. Most of the Aspergillus strains isolated from keratomycosis patients are being identified and reported at the genus level only (10). Their molecular identification at the species level would be of great importance, as the pathogenic potential may vary between different species of the genus.

A. tamarii is a member of Aspergillus section Flavi (8). This species is widely used in the food industry for the production of soy sauce (known as red Awamori koji) (14) and in the fermentation industry for the production of various enzymes, including amylases, proteases, and xylanolytic enzymes (3, 7, 17). Although A. tamarii is able to produce several toxic secondary metabolites, including cyclopiazonic acid and fumigaclavines (24), it has rarely been encountered as a human patho-

The only known cases are an eyelid infection (5), invasive nasosinusal aspergillosis in an immunocompetent patient (20), and onychomycosis in a 3-year-old boy (15). To our knowledge, the present case of fungal keratitis is the first report on an ocular infection caused by A. tamarii and the fourth known case worldwide involving this unusual opportunistic human pathogen.

Nucleotide sequence accession numbers. The GenBank accession numbers for the sequences of the case isolate are EF525554 (ITS), EF525555 (β-tubulin), and EF525556 (calmodulin).

This work was supported by the Indian National Science Academy and the Hungarian Academy of Sciences within the frames of the Indo-Hungarian bilateral exchange program (no. IA/INSA-HAS Project/2007). L.K. is a grantee of the János Bolyai Research Scholarship.

REFERENCES

