Comparison of Gen-Probe Transcription-Mediated Amplification, Abbott PCR, and Roche PCR Assays for Detection of Wild-Type and Mutant Plasmid Strains of *Chlamydia trachomatis* in Sweden

Jens Kjølseth Møller, Lisbeth Nørum Pedersen, and Kenneth Persson

Department of Clinical Microbiology, Aarhus University Hospital, Skejby, Denmark, and **Department of Clinical Microbiology, Malmö University Hospital, Malmö, Sweden**

Received 29 February 2008/Returned for modification 24 May 2008/Accepted 30 September 2008

Urogenital infections with *Chlamydia trachomatis* are endemic in young adults between the ages of 15 and 25 years. Extensive diagnostic screening and treatment of these infections with antibiotics have been performed for more than a decade (3, 8). In Scandinavia, the prevalence and presumably also the true incidence of genital *Chlamydia* infections have been increasing in recent years after a transient decrease (12). Nucleic acid amplification tests (NAATs) are sensitive and specific for screening and diagnosis of urogenital infections with *C. trachomatis* (5). Commercial nucleic acid amplification assays are often based on the detection of a target in the cryptic *Chlamydia* plasmid or the chromosome (MOMP gene). Plasmid-free variants of *C. trachomatis* have been reported (2, 6, 13), but these variants have not spread extensively, suggesting that the cryptic plasmid may play a role in the infectivity of the pathogen. The Gen-Probe Aptima Combo 2 (AC2) assay targets the 23S rRNA of *C. trachomatis* and the 16S rRNA of *Neisseria gonorhoeae* and thus is independent of the cryptic plasmid of *C. trachomatis*. The Aptima *C. trachomatis* (ACT) assay detects *C. trachomatis* by targeting a different rRNA molecule (16S rRNA). The high number of rRNA molecules in *C. trachomatis* compared to the copy number of the cryptic plasmid tends to increase the sensitivities of the AC2 and ACT assays compared to NAATs based on a plasmid or a chromosome target.

A new variant of *C. trachomatis* with a deletion in the cryptic plasmid has recently been detected in Sweden (10, 11). Once this new variant was characterized, it became immediately clear that some of the commercially available *C. trachomatis* assays based on a plasmid target were unable to detect strains with the deletion in the plasmid. The Abbott m2000 real-time PCR assay has recently been launched in Europe, and there are limited clinical studies of its clinical performance. The m2000 assay and the Roche Cobas Amplicor (RCA) assay both target a sequence within the area deleted in the new variant (7) and are therefore unable to detect such strains.

The aim of this study was to compare the clinical performances of the Gen-Probe AC2 and ACT assays with those of the Abbott m2000 and RCA assays in a population with a high rate of the new variant strain of *C. trachomatis*. The difference between positive results by the AC2 and ACT assays, on the one hand, and the m2000 and RCA assays, on the other, would presumably reflect the prevalence of the deletion variant.

MATERIALS AND METHODS

Consecutive first-catch urine samples submitted to the Department of Clinical Microbiology in Malmö, Sweden, and received on Monday to Thursday from November 2006 to February 2007 were included in the study. Samples (n = 1,808) were from male and female patients undergoing routine screening for *C. trachomatis*. Upon arrival, aliquots were transferred to the Gen-Probe and Abbott collection devices according to the respective package inserts. For some female urine samples, vaginal swabs were included in the urine tubes as part of the routine setup for *Chlamydia* testing in Malmö. The presence of a vaginal
The new variant strain of *C. trachomatis* was positively identified in 44 cases. Another five samples, which were negative by both the m2000 and RCA assays, were also negative by the specific test for the plasmid mutant and therefore could not be typed (Table 1). The new variant strain of *C. trachomatis* was thus demonstrated in 44/163 of the positive samples (27%).

The two rRNA assays, AC2 and ACT, both detected all true-positive samples. The difference in clinical sensitivity between the Abbott m2000 real-time PCR and the RCA PCR test, on the one hand, and the Gen-Probe AC2 and ACT assays, on the other, could be attributed almost exclusively to the presence of the cryptic plasmid with a 377-bp deletion, which was found in about one-quarter of the *Chlamydia*-positive samples examined. The specificities of the four assays were almost equal. If the 44 plasmid mutant strains identified were excluded from the comparison, the positivity rates of the four assays—the AC2, ACT, m2000, and RCA assays—were almost equal. If the 44 plasmid mutant strains identified were excluded from the comparison, the positivity rates of the four assays—the AC2, ACT, m2000, and RCA assays—were almost equal.

RESULTS

A total of 1,808 urine samples were examined. Female urine samples constituted 68% (1,231/1,808) of the total. The average ages of females and males were 25 and 26 years, respectively. Twenty-one percent (253/1,231) of the female urine samples also contained a vaginal swab. The overall prevalence of true-positive samples was 9% (163/1,808). The distribution of the primary test results with the four assays is shown in Table 1.

Discrepant analysis was performed on the 12 samples for which only one of the four assays was positive initially. Five AC2-positive samples were repeatedly negative upon retesting by the AC2 assay. Two m2000 borderline-positive samples were confirmed negative upon retesting by the m2000 assay, and one sample remained borderline positive after retesting. Two samples initially positive by the RCA assay were confirmed negative at retesting, and one of two ACT-positive samples was repeatedly positive by the ACT assay. The two samples with a repeatedly positive m2000 or ACT test result, respectively, were not evaluated further.

The two *rRNA* assays, AC2 and ACT, both detected all true-positive samples. The difference in clinical sensitivity between the Abbott m2000 real-time PCR and the RCA PCR test, on the one hand, and the Gen-Probe AC2 and ACT assays, on the other, could be attributed almost exclusively to the presence of the cryptic plasmid with a 377-bp deletion, which was found in about one-quarter of the *Chlamydia*-positive samples examined. The specificities of the four assays were almost equal. If the 44 plasmid mutant strains identified were excluded from the comparison, the positivity rates of the four assays—the AC2, ACT, m2000, and RCA assays—were almost equal. If the 44 plasmid mutant strains identified were excluded from the comparison, the positivity rates of the four assays—the AC2, ACT, m2000, and RCA assays—were almost equal.

The prevalences of *C. trachomatis* in male and female urine specimens were 14.4% (83/577) and 6.0% (59/978), respectively (Table 2). *C. trachomatis* tended to be more commonly detected in combined samples of urine and a vaginal swab (8.3% [21/253]) than in urine samples alone for women. However, the difference in the positivity rate between female urine
samples with and without a vaginal swab did not reach statistical significance \((x^2 = 1.35; P = 0.25) \). The mutant strains were uniformly distributed among female and male samples. The differences in the sensitivities of the m2000 and RCA assays for female urine samples with and without a vaginal swab were not statistically significant (Table 3).

DISCUSSION

The present study compares the performances of four different commercial NAATs for the detection of *Chlamydia trachomatis* in urine specimens in a population where a new deletion variant of *Chlamydia trachomatis* has recently been reported (11). Using the combined reference standard to define true-positive samples, we found that 9% of the 1,808 consecutive male and female urine samples examined were positive for *Chlamydia trachomatis*. This is in accordance with the observed *Chlamydia*-positive sample rate in different areas of Sweden (12). The prevalence of *Chlamydia trachomatis* was higher in male urine samples than in female urine samples. This is usually the case and merely reflects different testing opportunities for males and females. Males are more likely to present with symptoms or a history of presumptive exposure to a sexually transmitted infection (unpublished data).

For females, a higher rate of *Chlamydia trachomatis* was found in urine samples containing a vaginal swab than in urine samples only. The difference was not found to be statistically significant. However, cervical swabs in urine samples have been shown to significantly improve yield over that with urine only (1). Chan et al. noted a similar slight increase in sensitivity over that with the urine specimen alone when cervical cells were added to the urine and a NAAT was used for detection (4).

A marked difference in sensitivity was seen between the Gen-Probe rRNA assays (ACT and AC2) and the plasmid-based PCR assays from Abbott (m2000) and Roche (RCA). Both the AC2 and the ACT assay proved to be highly sensitive in finding all the *Chlamydia*-positive samples. When the samples with a confirmed new variant were excluded from the comparison, however, the difference in sensitivity between the AC2 and ACT assays, on the one hand, and the m2000 assay, on the other, was no longer statistically significant.

Five true-positive samples were negative by the m2000 and RCA assays after retesting and were also negative by all in-house tests for the plasmid mutant strain. Since at least one-quarter of all the positive samples were found to have the new variant, some of these negative samples could be expected to contain the new variant, assuming that the calculated sensitivity of the in-house plasmid mutant PCR is about 95%. Therefore, the number of plasmid mutant strains may have been underestimated in our comparison.

The specificities of the assays examined were very similar, between 99.6 and 99.9% based on the primary test result, reflecting a high concordance (96%) between the four NAATs evaluated. The high specificity of the NAATs is in accordance with the literature (5). Discordant results in which samples were positive by one assay were seen only for 12 of 1,808 samples examined. After retesting, only two samples remained positive by one assay only. These were considered false-positive results, although superior sensitivity compared to the other tests cannot be ruled out.

The finding of a mutant strain of *Chlamydia trachomatis* with a deletion in the cryptic plasmid that serves as the target of two commercial PCR assays raises several important questions, not only for the detection of *Chlamydia* but for the detection of microorganisms by NAATs in general. The plasmid mutant strain was recognized only by coincidence during an assessment of a new test for *Chlamydia trachomatis* in a comparative study (11). At the time of discovery, 13% of all positive samples in Halmstad already contained the plasmid mutant strain. The strain had probably been present for some time by then and had been able to spread uncontrolled despite a screening program for *Chlamydia trachomatis*. It is important for different test methods to be available and in use in order to avoid the exploitation of a common niche by a microorganism with a new mutation or nucleic acid rearrangement.

The cryptic plasmid in *Chlamydia trachomatis* may not be important for the survival of a *Chlamydia* strain. Yet it is remarkable that plasmid-free strains have not spread widely. This is in contrast to the new variant strain with the 377-bp deletion in the cryptic plasmid, which has established itself firmly in Sweden. Assays have now been modified and are able to detect the new variant. Still, constant vigilance is warranted to discover strains with new genetic makeups.

In conclusion, the new variant of *Chlamydia trachomatis* may spread quickly, and the situation will be aggravated if the diagnostic tests are unable to detect such strains. Preferably, routine detection methods for urogenital *Chlamydia* infections should be highly sensitive and specific but should also use target areas in *Chlamydia trachomatis* that are robust toward mutational changes.

ACKNOWLEDGMENTS

This work was supported by a grant from Gen-Probe Incorporated. Mette Jensen and Solveig Henriksen are thanked for excellent laboratory assistance.

REFERENCES

