New Diagnostic Real-Time PCR for Specific Detection of \textit{Parachlamydia acanthamoebae} DNA in Clinical SamplesV

Nicola Casson,1 Klara M. Posfay-Barbe,2 Alain Gervaix,2 and Gilbert Greub1*

Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland, and Children’s Hospital of Geneva, University Hospitals of Geneva, Geneva, Switzerland2

Received 30 November 2007/Returned for modification 10 January 2008/Accepted 18 January 2008

Given the low sensitivity of amoebal coculture, we developed a specific real-time PCR for the detection of \textit{Parachlamydia}. The analytical sensitivity was high, and the inter- and intrarun variabilities were low. When the PCR was applied to nasopharyngeal aspirates, it was positive for six patients with bronchiolitis. Future studies should address the role of \textit{Parachlamydia} in bronchiolitis.

\textit{Parachlamydia acanthamoebae} is an obligate intracellular bacterium that belongs to the order \textit{Chlamydiales} (1). Epidemiological (2), serological (11, 17), and molecular (6, 7, 10) studies support a potential role of \textit{Parachlamydia acanthamoebae} as an agent of pneumonia. \textit{P. acanthamoebae} has been shown to enter and replicate within human macrophages (13, 14) and to enter and persist within pneumocytes and lung fibroblasts (4). We recently established an animal model of lung infection that confirmed the third and fourth Koch’s postulates for the role of \textit{P. acanthamoebae} in pneumonia (3). Taken together, these studies suggest that human exposure to \textit{P. acanthamoebae} may lead to bronchitis, community-acquired pneumonia, and aspiration pneumonia.

Diagnostic methods for the detection of human \textit{Parachlamydia} infection are limited by the inability of these agents to grow on axenic medium. In addition, amoebal coculture is time-consuming and is available in only a few specialized laboratories (12). Serologic diagnosis is also limited by possible cross-reactivity and by the time necessary to seroconvert against an invading pathogen. For these reasons, molecular diagnostic approaches are warranted. Broad-range PCR assays for the members of the \textit{Chlamydiales}, which include \textit{P. acanthamoebae}, have been described (8, 18), but their sensitivities are limited. An additional sequencing step is required, which is directly achievable (without cloning) only for samples containing a minimum of 1,000 DNA copies (G. Greub et al., unpublished data). We therefore developed a real-time PCR assay for the specific detection of \textit{Parachlamydia acanthamoebae} from clinical samples and applied it to samples taken from pediatric patients with bronchiolitis.

Using the primer express software (Applied Biosystems, Darmstadt, Germany), we selected probe PacR (5’-CTCAGCGTCAGGAATAAGC-3’), which amplify a 103-bp part of the 16S rRNA-encoding gene. The reactions were performed with 0.2 \(\mu\text{M}\) of each primer, 0.1 \(\mu\text{M}\) of probe, iTaq Supermix (Bio-Rad, Rheinach, Switzerland), and 5 \(\mu\text{L}\) of DNA sample. The cycling conditions were 2 min at 50°C and 10 min at 95°C, followed by 45 cycles of 15 s at 95°C and 1 min at 60°C. The PCR products were detected with an ABI Prism 7000 instrument (Applied Biosystems). Each sample was amplified in duplicate. Inhibition control, negative PCR mixture control, and extraction controls were systematically tested. To allow quantification, a plasmid containing the target gene was constructed, as described previously (5).

The analytical sensitivity of the real-time PCR was 10 copies of plasmidic control DNA per reaction mixture. This sensitivity is similar to that of a quantitative TaqMan PCR targeting the ADP/ATP translocase encoding gene (\textit{tlc}) of \textit{Parachlamydia} (10) (data not shown) and is 100-fold more sensitive than the 16S\textit{r}F-Rp2Chlam broad-range PCR (18). Use of this real-time PCR has an additional advantage, in that gel electrophoresis is not needed. The risk of amplicon contamination is highly limited since the PCR microplates are not opened after amplification.

The real-time PCR was highly specific, since no cross-amplification was observed when the genomic DNA of humans, fungi (\textit{Candida albicans} ATCC 10231, \textit{Aspergillus fumigatus} clinical isolate), \textit{Acanthamoeba castellani} (ATCC 30010), and the bacteria listed in Table 1 were tested.

The reproducibility of the threshold cycle (\(C_T\)) results was determined by testing duplicates of 10-fold serial dilutions of the plasmid in 11 independent experiments. The intrarun reproducibility was good, as shown in Fig. 1, with the \(C_T\) results for both duplicates being relatively similar and with a correlation coefficient (\(r^2\)) of 0.961 (Fig. 1A). By using the Bland-Altman test, the 95% confidence interval was 1.32 cycles (Fig. 1B). The intrarun reproducibility is shown in Fig. 1C. The intrarun variability was relatively low at high concentrations, being 1.43, 1.68, and 1.95 cycles for 10\(^5\), 10\(^4\), and 10\(^3\) plasmidic copies \(\mu\text{L}^{-1}\), respectively. The intrarun variability was, however, relatively high at a lower concentration (2.63 cycles for 10\(^3\) plasmidic copies \(\mu\text{L}^{-1}\)) (Fig. 1C).

Since several lines of evidence support the role of...
Parachlamydia acanthamoebae as a potential agent of lower respiratory tract infections reviewer references 6 and 15, the real-time PCR was applied to 39 nasopharyngeal aspirates obtained from children with respiratory syncytial virus-negative bronchiolitis. DNA was extracted from 200 μl of thawed samples by using the AquaPure genomic DNA extraction kit (Bio-Rad). DNA was eluted in a final volume of 100 μl of the elution buffer provided with the kit. A negative extraction control was tested for each extraction run. The results for positive samples were confirmed by the tlc real-time PCR (10).

Parachlamydia DNA was detected in 13 of the 39 samples, 6 of which were confirmed to be positive by the tlc quantitative PCR. The clinical and microbiological characteristics of these six patients are summarized in Table 2. We successfully sequenced the product of the 16SIF-Rp2Chlam PCR (18) only once, consistent with a bacterial burden of <1,000 copies in the five other samples. The sequence shared 99.6% (577/579) similarity with P. acanthamoebae strain Hall’s coccus and 100% (577/577) similarity with P. acanthamoebae strain BN9.

The seven patients with a positive result by the PacF-PacR PCR (the new real-time PCR) but a negative result by the real-time PCR targeting the tlc gene were also negative by the 16SIF-Rp2Chlam PCR. Thus, the positive PacF-PacR PCR results may represent either false-positive results due to PCR contamination or false-negative results by both of the other PCRs.

The fact that another agent of bronchiolitis was identified in only one patient positive for Parachlamydia (Table 2) supports a possible role of Parachlamydia in the pathogenesis of bronchiolitis. However, we cannot exclude the possibility that Parachlamydia is only a colonizer of the lower respiratory tract. Since Simkania negevensis, another member of the order Chlamydiales related to Parachlamydia, has been associated with bronchiolitis in infants (9, 16), further studies should investigate a possible pathogenic role of P. acanthamoebae in this setting. This new quantitative PCR may be useful for the better definition of the pathogenicity of Parachlamydia in both animals and humans.

![Fig. 1](http://cjm.asm.org)
This work was supported by Swiss National Science Foundation grant FN320200-B116445. Gilbert Greub is supported by the Leenards Foundation through a career award (Bourse Leenards pour la Relevé Académique en Médecine Clinique à Lausanne).

We thank P. Tarr (Medizinische Universitätsklinik, Kantonsspital Bruderholz, Bruderholz, Switzerland) for reviewing the manuscript, as well as A. Aebi (Institute of Microbiology, Lausanne, Switzerland) for technical help.

REFERENCES