Ventriculoperitoneal Shunt Infection Caused by Actinomyces neuii subsp. neuii

Richard R. Watkins,1,2 Kathy Anthony,3 Suzanne Schroder,3 and Gerri S. Hall3*

Division of Infectious Diseases, Akron General Medical Center, Akron, Ohio,1 and Northeastern Ohio Universities College of Medicine2 and Section of Clinical Microbiology, Cleveland Clinic,3 Cleveland, Ohio

Received 6 November 2007/Returned for modification 28 January 2008/Accepted 14 March 2008

Actinomyces neuii subsp. neuii is a rare isolate in clinical specimens. The organism was previously designated CDC coryneform group 1 and was renamed in 1994. A case of a ventriculoperitoneal shunt infection caused by this organism is described.

CASE REPORT

A 64-year-old woman had a ventriculoperitoneal shunt (VP shunt) inserted in 1995 after a cerebral aneurysm. She presented in October 2007 with 1 month of vomiting and increasing difficulty with balance. She had been having low-grade fevers, up to 37.8°C. She denied headaches, blurry vision, or neck stiffness. One week before admission she had a computed tomography scan of the head done which showed ventriculomegaly and the VP shunt in good position. The day prior to admission she developed worsening nausea and fell. No other symptoms of note were elicited. There was a history of left-sided hemiplegia following the cerebral aneurysm, hypothyroidism, depression, hypertension, mitral valve prolapse, and cataracts. Her home medications included antihypertensives, thyroid replacement, and an antidepressant. She was a retired nurse.

On examination, she was afebrile (36.6°C) and nontoxic appearing. Her dentition was good, and there were multiple fillings. There was no tenderness over the VP shunt. Her neck was supple with full range of motion. She was flaccid on the left side. Initial hematological investigations showed a white blood cell count of 10.5 × 10³/liter and a platelet count of 296 × 10³/liter. Two sets of blood cultures were obtained. She underwent lumbar puncture in the emergency department. The first tube of cerebrospinal fluid (CSF) showed 154 white blood cells, 14% segmented neutrophils, and 80% lymphocytes. The Gram stain was initially read as gram-variable bacilli. The next day, a repeat Gram stain of the isolate showed gram-positive rods similar to the initial CSF culture based on Gram stain, morphology, and catalase and was not further evaluated. On hospital day 15 a new VP shunt was inserted. She was discharged to home and seen in follow-up in the office. All of her symptoms had resolved, and she remained afebrile. After completion of the intravenous therapy she was switched to oral penicillin for a planned 6-month course and has done well in follow-up.

Upon further questioning the patient recalled that she had a dental cleaning with teeth scraping about 3 months before her symptoms began. However, she took amoxicillin prior to the procedure for prophylaxis. We did not attempt to isolate the organism from her mouth.
and group 1-like strains. In 1994 the 16S rRNA genes were amplified in vitro, and their nucleotide sequences were directly determined (5). Comparative sequence analyses showed that the CDC group 1 and group 1-like strains are members of the genus *Actinomyces*. *A. neui* was named in honor of Harold Neu, an infectious disease and antibiotic expert. The organism is a gram-positive bacillus, is catalase positive, and forms non-hemolytic colonies. The colonies appear on agar plates as circular, smooth, convex, and white with entire edges. It grows under both aerobic and facultative anaerobic conditions. It is non-spore forming and does not branch or form sulfur granules like other species of *Actinomyces*.

Members of the genus *Actinomyces* have been isolated from a number of clinical specimens including blood, wound, bone, abscesses, bronchial washes, gallbladder fluid, pleural fluid, and urine (2). Prior to its renaming in 1994 one report listed a shunt fluid culture with CDC group 1, although the age and clinical outcome of the case were not described (4). More recent reports describe *Actinomyces neuii* as a cause of neonatal sepsis (8), endophthalmitis (6, 9, 10), infective endocarditis (3), pericarditis (7), chronic osteomyelitis (11), and a mammary prosthesis infection (1).

Our patient had dental work done approximately 3 months prior to her symptoms, which is the most likely source for her infection. *Actinomyces* species are part of the oral microflora of humans and animals. Several species are prevalent in plaque specimens from adults with periodontitis and gingivitis. Antibiotic susceptibility includes β-lactam, clindamycin, erythromycin, rifampin, tetracycline, and vancomycin. Duration of therapy is individualized and prolonged, usually 3 to 6 months. As noted in the case report our patient had good dentition at the time of the diagnosis of the shunt infection. No information is available about the condition of her dentition prior to the dental work. It is important to understand that antibiotic prophylaxis is not 100% effective in preventing subsequent infection arising from the oral cavity but does decrease the risk. Our patient did not have any other identifiable source for the *Actinomyces neuii*.

In conclusion, *Actinomyces neuii* should be considered in the differential diagnosis of patients with CSF shunt infections, especially in the setting of recent dental procedures. Based on this case we recommend complete removal of VP shunt hardware followed by prolonged antibiotic therapy when *Actinomyces neuii* is isolated from CSF.

REFERENCES