Airway Infection with a Novel *Cupriavidus* Species with Persons with Cystic Fibrosis

Wiltrud Maria Kalka-Moll,1* John J. LiPuma,2 Frank J. Accurso,3 Georg Plum,1 Silke van Koningsbruggen,4 and Peter Vandamme5

Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne Medical Center, Cologne, Germany;1 Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan;2 Pulmonary Medicine/Cystic Fibrosis Center/Allergy, Children’s Hospital of Denver, Denver, Colorado;3 Cystic Fibrosis Center Cologne, University Children’s Hospital Cologne, University of Cologne Medical Center, Cologne, Germany;4; and Laboratory of Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium5

Received 28 April 2009/Returned for modification 9 June 2009/Accepted 21 June 2009

We describe the recovery and identification of a bacterium that represents a new species of the genus *Cupriavidus* from cultures of respiratory tract specimens from two patients with cystic fibrosis (CF). The elucidation of the role of this species in CF lung disease will require an evaluation of a greater number of cases.

Persons with cystic fibrosis (CF) have chronic airway infection with gram-negative bacterial species that are usually not pathogenic for healthy persons. In addition to *Pseudomonas aeruginosa*, which infects the majority of CF patients, several other species, including *Stenotrophomonas maltophilia* and *Achromobacter xylosoxidans*, as well as a variety of *Ralstonia*, *Cupriavidus*, and *Pandoraea* species, also cause infection in CF (1, 8). However, the precise role these species play in contributing to lung disease in CF is unclear. Obstacles to better elucidating the potential role of these species in CF are their rapidly evolving taxonomy and the difficulty with their proper identification in culture. Here, we describe the recovery and identification of a novel *Cupriavidus* species from respiratory specimens from two CF patients, one living in Germany and the other residing in the United States.

Case 1. The patient was an 11-year-old boy with CF and trisomy 21. His body weight was 20.4 kg, and he was 120 cm tall (5th and 25th percentile, respectively, for boys with trisomy 21). He had undergone operative correction of a patent ductus arteriosus 2 months after birth. Chronic respiratory tract colonization with *P. aeruginosa* had been treated with antibiotic therapy (ceftazidime or meropenem with tobramycin) for a maximum of 2 weeks, twice a year. Analyses of serum antibody titers to *P. aeruginosa* alkaline phosphatase, *P. aeruginosa* elastase, and *P. aeruginosa* exotoxin (Mediagnost) were consistently negative. *P. aeruginosa* was not detected in sputum cultures during the year before he presented with a slight increase in mucus production and dyspnea. At that time, positive serum antibody titers to *P. aeruginosa* alkaline phosphatase (1:1,000), *P. aeruginosa* elastase (1:1,900), and *P. aeruginosa* exotoxin (1:1,600) (positive cutoff for all three titers was 1:500) were detected. Pulmonary function testing could not be performed. Microbiological examination of throat and nasal swabs did not yield *P. aeruginosa*, but *Staphylococcus aureus*, *Haemophilus influenzae*, and a gram-negative rod, designated M318-3, were recovered. Bronchoalveolar lavage fluid culture yielded the same results. The lavage fluid also contained 4.2 × 10^4 cells/ml; 58% of the cells were macrophages, 33.3% were neutrophils, and 9% were lymphocytes. PCR assays for *Mycoplasma pneumoniae*, *Chlamydia pneumoniae*, mycobacteria, cytomegalovirus, and Epstein-Barr virus were negative. Hematologic testing showed a slight elevation of segmented granulocytes to 64% (normal range, 25% to 60%) and an elevated level of immunoglobulin A at 2.93 g/liter (normal range, 0.3 to 2.3 g/liter).

Strain M318-3 grew on Columbia agar with 5% sheep blood and on MacConkey agar but not on *Pseudomonas* or *Burkholderia cepacia* selective agars at 36°C and 42°C (10). Colonies that were 2 mm in diameter, convex in elevation, smooth, grayish-yellow in color, and without hemolysis were visible after 1.5 days of cultivation. After 1 day of incubation at room temperature in thioglycolate broth, the bacteria showed a light yellow pigment that disappeared thereafter. The strain was nonfermenting and catalase and oxidase positive and did not hydrolyze urea. It was immotile and showed negative results in the following tests using the API 20NE system (bioMérieux): nitrate and nitrite reduction, indole production, t-arginine dihydrolysis, gelatin and esculin hydrolysis, β-galactosidase, and oxidation-fermentation of glucose, arabinose, mannose, mannitol, N-acetylglucosamine, maltose, trisodium citrate, and phenylacetate. Positive results were obtained using the following tests: oxidation-fermentation of potassium gluconate, capric acid, adipic acid, and malic acid. The code number obtained with API 20NE was 000047, which correlated with *Cupriavidus pauculus* at a probability of 47.6%, *Alcaligenes faecalis* at 29.5%, and *Comamonas testosteroni* at 19.9%. The Vitrek 2 (bioMérieux) did not provide an identification result. Antimicrobial susceptibility was determined according to CLSI guidelines using Mueller-Hinton broth. The MICs for the antimicrobial agents tested, expressed in μg/ml, were as follows: ampicillin, 16; ampicillin-sulbactam-clavulanate, 0.047; piperacillin-tazobactam, ≤0.016; doxycycline, 0.125; cefotaxime, 0.75; ceftazidime, 3.0; imipenem, 0.19; meropenem, 0.25; ciprofloxacin, 0.094; levofloxacin, 0.023; moxifloxacin, 0.016; trimethoprim-sulfamethoxazole, 0.064; and colistin,

1 Corresponding author. Present address: MVZ Dr. Stein+Kollegen, Wallstrasse 10, 41061 Mönchengladbach, Germany. Phone: 49-2161-8194116. Fax: 49-2161-819450. E-mail: wkalkamoll@labor-stein.de.

2 Published ahead of print on 15 July 2009.
0.047 (Etest). Susceptibility to aztreonam and amikacin was shown using the agar diffusion test.

Because strain M318-3 was not identified by biochemical profiling with commercial systems, it was analyzed by 16S rRNA sequencing. Sequence comparison to publicly available sequences indicated that the organism had the highest similarity to Cupriavidus. The patient was treated with amoxicillin (amoxicillin)-clavulanate at a dose of 60 mg per kg per day. Two weeks after beginning the antibiotic treatment, the Cupriavidus species was again cultured from a throat swab; however, mucus secretion and dyspnea declined slowly. After treatment, this bacterium has not again been recovered.

Case 2. The patient was a 22-year-old young man who had been born preterm and small for gestational age and who had a protracted neonatal hospitalization, including mechanical ventilation. He was diagnosed with CF during an evaluation of failure to thrive at 5 months of age. His sweat test at that time was unequivocally positive, and he was subsequently found to be homozygous for the delta F508 mutation. He was short of stature throughout his childhood, attaining full height as an adult at 150 cm. He was microcephalic and had a significant developmental delay, with an IQ of 65. He also had a mild form of congenital mytonia characterized by intermittent muscle pain and mild movement abnormalities. After the first year of life, his respiratory course had been remarkably stable. Sputum cultures first became positive for P. aeruginosa when he was 15 years of age and remained positive for the next 7 years. During this interval, only one sputum culture was positive for S. aureus, one for Aspergillus fumigatus, one for Pseudomonas fluorescens, and two for S. maltophilia. He presented at 22 years of age with symptoms of a mild upper respiratory tract infection. His pulmonary function studies were unchanged from baseline, however, and no antibiotic therapy was prescribed. A culture from a throat swab was positive for mucoid P. aeruginosa and a gram-negative rod, designated AU3369. The latter organism grew well aerobically on Mueller-Hinton broth (Becton Dickinson) supplemented with 1.6% (wt/vol) agar and incubated at 32°C for 24 h and showed no growth on Burkholderia cepacia selective agar (10). It was nonfermenting, catalase positive, and weakly oxidase positive. It showed negative results for lysine dehydrogenase and o-nitrophenyl-β-D-galactopyranoside as well as oxidation-fermentation of sucrose and lactose. Analysis with the RapID NF Plus kit (Remel) did not provide an identification result. DNA was prepared from a culture of this organism, as previously described (18). Two 16S rRNA gene-targeted PCR assays, one specific for all Burkholderia, Ralstonia, and Pandoraea species and one specific for Ralstonia species, were performed, as previously described (5, 12), and both showed positive results. Four other 16S rRNA gene-targeted PCR assays specific for Ralstonia pickettii, Ralstonia mannitolilytica, Ralstonia insidiosa, and Cupriavidus respiraculi, respectively, were negative (3, 6, 7). Previously published 16S rRNA gene-directed PCR assays specific for other CF-related bacterial species, including Pseudomonas, Stenotrophomonas, and Achromobacter (13, 18, 19), were also negative. Complete 16S rRNA gene PCR amplification, sequencing, and editing were performed, as previously described (18). Edited and assembled sequences were compared to those available in the NCBI GenBank bacterial DNA database. Strain AU3369 was also identified as a Cupriavidus species. The patient remained relatively well, not requiring hospitalization for an exacerbation of pulmonary symptoms until the age of 25. The Cupriavidus species was never again recovered from culture of respiratory tract specimens.

Individuals with CF are susceptible to life-threatening respiratory infections due to a plethora of opportunistic bacterial species. Although much remains unknown regarding the epidemiology of these species, evidence indicates that they may be acquired by patient-to-patient transmission or through independent events from environmental sources (1). The detection of particularly unusual species, such as the novel Cupriavidus species identified in the two patients described herein, strongly suggests acquisition from an as yet undefined environmental source. Both patients had relatively mild lung disease, which seemed to only transiently worsen coincident with the recovery of the novel Cupriavidus strain. Of note, at the time that the Cupriavidus was recovered from the first patient, serum antibody titers developed to P. aeruginosa alkaline phosphatase, elastase, and exotoxin, suggesting the possibility of serologic cross-reactivity between Pseudomonas and Cupriavidus antigens.

Comparison of the 16S rRNA gene sequences of strains M318-3 and AU3369 revealed that they were 100% identical; the highest similarity levels (between 97% and 99%) were obtained toward 16S rRNA gene sequences of reference and other strains of several Cupriavidus species, including Cupriavidus gillardii, Cupriavidus respiraculi, and several environmental Cupriavidus species. At present, Cupriavidus species are known mainly as environmental bacteria, including root nodule symbionts and metal resistant soil saprophytes (2, 14–17); nevertheless, a growing number of Cupriavidus species, including C. respiraculi, C. gillardii, C. pauculus, C. metallidurans, and C. basilensis (5, 7), have been isolated from specimens from CF patients. Strains M318-3 and AU3369 were subsequently included in a polyphasic taxonomic study of unusual CF pathogens, which revealed that they represent a novel Cupriavidus species. The details of the latter taxonomic study will be published elsewhere (P. Vandamme, E. De Brandt, E. Falsen, and J. J. LiPuma, unpublished data). The recovery of this species highlights the fact that unusual microorganisms may be recovered from the respiratory secretions of CF patients (4). Identification of Cupriavidus species is difficult, and misidentification as Pseudomonas fluorescens or B. cepacia complex is frequent (5, 9, 11). Accurate identification of these species is a necessary prerequisite to further studies aimed at determining the clinical relevance of these species to CF. Therefore, identification of Cupriavidus species based on conventional methods should be confirmed with molecular (PCR-based) assays.

We thank Natalya Teplitzka for excellent technical support. P.V. is indebted to the Fund for Scientific Research—Flanders (Belgium) for financial support. J.J.L. is supported by the Cystic Fibrosis Foundation (United States). We declare no conflicts of interest.

REFERENCES

