Lack of Association between Clinical Outcome of *Clostridium difficile* Infections, Strain Type, and Virulence-Associated Phenotypes

Stéphanie Sirard, Louis Valiquette, and Louis-Charles Fortier*
Département de Microbiologie et d’Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec, Canada

Received 10 July 2011/Returned for modification 6 August 2011/Accepted 22 September 2011

*Corresponding author. Mailing address: Département de Microbiologie et d’Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Ave. Nord, Sherbrooke, Québec, Canada, J1H 5N4. Phone: (819) 564-5322. Fax: (819) 564-5392. E-mail: Louis-Charles.Fortier@USherbrooke.ca.

Published ahead of print on 28 September 2011.

Clostridium difficile is the leading cause of nosocomial antibiotic-associated diarrhea in industrialized countries. The clinical presentation of *C. difficile* infection (CDI) varies in severity, with patients presenting with symptoms ranging from very mild diarrhea to fulminant colitis with complications such as toxic megacolon, bowel perforation, sepsis, and death (33).

The main virulence factors in *C. difficile* are TcdA and TcdB, two exotoxins encoded on a 19.6-kb pathogenicity locus, the PaLoc. The expression of the toxin genes is induced by the positive regulatory TcdR (21) and repressed by TcdC (22), which is strongly expressed during early log phase (16). Deletions in the *tcdC* genes from various isolates have been reported, including a common 18-bp deletion and a 1-bp deletion at nucleotide 117 leading to the expression of a truncated TcdC. An emerging strain, referred to as NAP1/027, carries these deletions in *tcdC* and was associated with major outbreaks in North America and Europe and is now spreading worldwide (6, 18, 20). Truncation of TcdC is thought to be responsible for the higher toxin production by this strain (9, 11, 40). In addition, NAP1/027 as well as other strains encodes a binary toxin (CDT) that could possibly promote adhesion to colonic cells (31, 34). A number of studies suggest that epidemic NAP1/027 strains produce more spores, which could promote dissemination and persistence in hospital settings, thus exacerbating the problem of nosocomial transmission of CDI (1, 24, 41). However, sporulation in NAP1/027 is controversial, as shown by recent *in vitro* studies that did not show a correlation between strain type and sporulation rate (5, 27).

A current assumption is that patients infected with NAP1/027 strains develop more severe CDI symptoms and have greater risk of experiencing relapse, complications, and death (20, 23, 25, 30). However, the epidemiology of *C. difficile* is changing rapidly, and a number of recent studies suggest that strain type, including NAP1/027, is not associated with more severe disease in nonepidemic settings and that deletions in *tcdC* alone may not be good predictors of toxin production (7, 26, 42).

The objective of this study was to characterize 21 *C. difficile* isolates obtained from patients suffering from CDI. Patients were selected based on clinical outcome, with no prior assumption regarding the strain of *C. difficile* that caused disease. The isolates were typed with different methods, including PCR ribotyping and tandem repeat sequence typing (TRST), to study possible associations between strain type, disease severity, clinical outcome, and virulence-associated phenotypes, mainly toxin production and sporulation. The choice to use TRST was based on the fact that sequence data are generated, thus enabling interlaboratory comparisons.

MATERIALS AND METHODS

Patients, bacterial strains, and growth conditions. Patients were recruited during a nonoutbreak period between 16 September 2005 and 14 March 2006 at the Centre Hospitalier Universitaire de Sherbrooke (CHUS) in the province of Quebec, Canada, a 712-bed secondary and tertiary care hospital. Patients were initially selected based on CDI outcomes according to the 2010 Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA) guidelines (8), and we included strains from patients with mild to moderate (*n* = 11), severe (*n* = 5), and complicated (*n* = 5) CDI. The
informed consent was obtained from all patients. C. difficile was isolated from feces after alcohol shock and growth on CDNM selective agar (Oxoid, Canada) supplemented with 5% sheep blood, 0.1% taurocholate, and 1 mM glycine. The identity of presumptive C. difficile colonies was confirmed by PCR using primers TpiA and TpiB, which are specific to the triose phosphate isomerase gene (tpi) of C. difficile, as described before (19) (Table 1). C. difficile isolates were grown at 37°C under an anaerobic atmosphere (10% hydrogen, 5% CO₂, and 85% nitrogen) in an anaerobic chamber (Coy Laboratories). Bacteria were routinely grown in brain heart infusion (BHI) broth (Difco), BHI broth supplemented with 0.1% taurocholate and 1 mM glycine (BHI-tag) to favor spore germination, or tryptose yeast (TY) broth or agar (2% tryptose [Oxoid, Canada], 2% yeast extract [BioShop, Canada]). All media were prepared under anaerobic atmosphere prior to use.

Molecular typing. Genomic DNA was extracted from 5.5 ml overnight cultures in BHI broth using the Bacteria GenomicPrep kit (GE Healthcare, Canada). All primers used in this study are listed in Table 1. The tpiA gene was amplified as described previously (19). The tcdA gene was amplified with primers TcdA-2F and TcdA-2R, which were designed from a conserved region of the entire tcdC gene as described elsewhere (36). The products were sequenced on an ABI 3730 xl DNA sequencer (Applied Biosystems, Canada) at the genome platform of the CHUL Research Center (Quebec, Canada). Sequences were analyzed and compared to the tcdC sequence from the reference strain VPI-07862 (NCBI accession number NC009089). The reactions were performed in a 50-µl volume containing 1× amplification buffer (10 mM Tris-HCl [pH 9.0], 3.5 mM MgCl₂, 125 µM each deoxynucleoside triphosphate [dNTP], 1 µM each primer, 1.25 U Taq DNA polymerase, and 20 ng of purified genomic DNA. The PCR mixture was denatured (3 min at 94°C), and then 35 cycles (94°C for 30 s, 58°C for 30 s, and 72°C for 60 s) were performed, followed by a final extension step at 72°C for 5 min. The binary toxin genes cdtA and cdtB were amplified as described before (37). All PCR products were amplified in an Eppendorf Mastercycler Pro apparatus and were run on a 2% agarose gel, stained with ethidium bromide, and photographed.

Sequencing of tcdC. Primers C1 and C2 (Table 1) were used to amplify the entire tcdC gene as described elsewhere (36). The products were sequenced on an ABI 3730 xl DNA sequencer (Applied Biosystems, Canada) at the genome platform of the CHUL Research Center (Quebec, Canada). Sequences were analyzed and compared to the tcdC sequence from the reference strain VPI-07862 (NCBI accession number NC009089). The reactions were performed in a 50-µl volume containing 1× amplification buffer (10 mM Tris-HCl [pH 9.0], 3.5 mM MgCl₂, 125 µM each deoxynucleoside triphosphate [dNTP], 1 µM each primer, 1.25 U Taq DNA polymerase, and 20 ng of purified genomic DNA. The PCR mixture was denatured (3 min at 94°C), and then 35 cycles (94°C for 30 s, 58°C for 30 s, and 72°C for 60 s) were performed, followed by a final extension step at 72°C for 5 min. The binary toxin genes cdtA and cdtB were amplified as described before (37). All PCR products were amplified in an Eppendorf Mastercycler Pro apparatus and were run on a 2% agarose gel, stained with ethidium bromide, and photographed.

PCR-ribotyping. PCR-ribotyping was performed using primers CD16S-1F and CD23S-2R as described previously (3) (Table 1) with modifications described elsewhere (13). Patterns were compared using Gel Compar II (Applied Maths, Belgium), and profiles with ≤85% similarity using Pearson’s correlation were considered different PCR ribotypes.

TRST. Tandem repeat sequence typing (TRST) was based on the method described by Zaiss et al. (43) except that loci TR6 and TR10 were amplified separately. PCR products were sequenced at the CHUL Research Center, and sequences were analyzed using BioNumerics v5.10 and the Repeat-Typing plug-in (Applied Maths, Belgium). The assignment of TRST types was based on associated repeat profiles and repeat sequences previously reported by Zaiss et al. (43).

MIC determination. Antibiotics tested were clindamycin (CLI), ceftriaxone (CRO), ciprofloxacin (CIP), levofloxacin (LVX), metronidazole (MTZ), vancomycin (VAN), piperacillin-tazobactam (TZP), and ticaglycine (TIGE). MICs were determined using a standard microdilution method in 96-well plates. Overnight cultures in BHI broth were adjusted to a 0.5 McFarland standard and seeded into 96-well plates containing BHI broth and antibiotics to final concentrations ranging from 256 to 0.125 µg/ml. Plates were incubated for 18 h under an anaerobic atmosphere, and the optical density at 600 nm (OD₆₀₀) was recorded using a PowerWave XS microplate reader (BioTek Instruments, Canada). MIC results were interpreted according to the M11-S1 updated tables of the Clinical and Laboratory Standards Institute (CLSI) guidelines for anaerobes (28), using C. difficile breakpoints for the agar dilution method since no values were available for the broth method. Breakpoints for MXF were used to interpret CIP and LVX results. No breakpoints were available for ceftriaxone with C. difficile.

Evaluation of toxin production. Toxin production was assessed in vitro, as described previously (35), using an immunodot blot procedure. Briefly, an overnight culture in BHI broth was used to inoculate 50 ml of TY broth (2% tryptone, 2% yeast extract, Canada). Densitometry analysis of the spots was performed in three independent experiments with ImageJ v1.44o, and relative density units (arbitrary units [AU]) were given to each spot. The overall mean spot density at 48 h was
then calculated by including all isolates, and low (L) and high (H) toxin production correspond to mean density values below or above the mean for all isolates (1.4 ± 0.1 AU/mL), respectively.

Evaluation of sporulation rates. The method for evaluation of sporulation rates consisted of inoculating 10 mL of TY broth with 2% of an overnight culture in BHI-tag broth. When the OD of the culture reached 0.5, 10 mL of fresh TY broth was inoculated at 2% and further incubated. After 24, 48, and 72 h of incubation, 100-μL samples were collected, fixed in 0.1% formaldehyde, and placed into a Petroff-Hausser chamber for counting. Under phase-contrast light, spores were counted and the corresponding sporulation rates were calculated.

Table 2. Molecular and phenotypic characteristics of *C. difficile* isolates

<table>
<thead>
<tr>
<th>CDI clinical outcome</th>
<th>Strain</th>
<th>Ribotype</th>
<th>TRST</th>
<th>CDT<sup>a</sup></th>
<th>tcdC<sup>a</sup></th>
<th>Toxins at 48 h<sup>b</sup></th>
<th>Spores at 48 h<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TcdA</td>
<td>TcdB</td>
</tr>
<tr>
<td>Complicated</td>
<td>383</td>
<td>27</td>
<td>27</td>
<td>+</td>
<td>+</td>
<td>466</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>390</td>
<td>27</td>
<td>27</td>
<td>+</td>
<td>+</td>
<td>467</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>391</td>
<td>27</td>
<td>27</td>
<td>+</td>
<td>+</td>
<td>579**</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>398</td>
<td>18</td>
<td>19</td>
<td>+</td>
<td>wt</td>
<td>106</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>403</td>
<td>27</td>
<td>27</td>
<td>+</td>
<td>+</td>
<td>571**</td>
<td>H</td>
</tr>
<tr>
<td>Severe</td>
<td>395</td>
<td>27</td>
<td>27</td>
<td>+</td>
<td>+</td>
<td>725***</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>396*</td>
<td>27</td>
<td>27</td>
<td>+</td>
<td>+</td>
<td>171</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>384</td>
<td>53</td>
<td>3</td>
<td>−</td>
<td>wt</td>
<td>104</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>392</td>
<td>23</td>
<td>14</td>
<td>−</td>
<td>wt</td>
<td>277</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>399</td>
<td>6</td>
<td>2</td>
<td>−</td>
<td>wt</td>
<td>95</td>
<td>L</td>
</tr>
<tr>
<td>Mild to moderate</td>
<td>386</td>
<td>27</td>
<td>27</td>
<td>+</td>
<td>+</td>
<td>670**</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>399</td>
<td>6</td>
<td>2</td>
<td>−</td>
<td>wt</td>
<td>95</td>
<td>L</td>
</tr>
</tbody>
</table>

^a Presence (+) or absence (−) of the *cdtA* and *cdtB* genes, encoding the binary toxin CDT.

^b wt, wild-type *tcdC* sequence identical to that of the reference strain VPI 10463; +, presence of the common 18-bp deletion in addition to the 1-bp deletion at nucleotide 117.

Table 3. MICs of antibiotics for *C. difficile* isolates

<table>
<thead>
<tr>
<th>Strain<sup>a</sup></th>
<th>MIC (μg/mL)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CLI</td>
</tr>
<tr>
<td>383*</td>
<td>>256</td>
</tr>
<tr>
<td>386*</td>
<td>>256</td>
</tr>
<tr>
<td>387*</td>
<td>>256</td>
</tr>
<tr>
<td>388*</td>
<td>>256</td>
</tr>
<tr>
<td>389*</td>
<td>>256</td>
</tr>
<tr>
<td>390*</td>
<td>>256</td>
</tr>
<tr>
<td>391*</td>
<td>>256</td>
</tr>
<tr>
<td>392*</td>
<td>>256</td>
</tr>
<tr>
<td>398*</td>
<td>>256</td>
</tr>
<tr>
<td>399*</td>
<td>>256</td>
</tr>
<tr>
<td>400</td>
<td>>256</td>
</tr>
<tr>
<td>402</td>
<td>>256</td>
</tr>
</tbody>
</table>

^a NAP1027 strains are marked with an asterisk.

^b CLI, clindamycin; CRO, ceftriaxone; CIP, ciprofloxacin; LVX, levofloxacin; MXF, moxifloxacin; MTZ, metronidazole; VAN, vancomycin; TZP, piperacillin-tazobactam; TIGE, tigecycline.
seen as bright objects. Free spores were counted in three independent experiments, and the sporulation rate was determined as spores/ml. The mean spore count at 48 h was calculated by including all isolates, and low (L) and high (H) sporulation rates correspond to spore counts below or above the mean, respectively.

RESULTS

Molecular typing versus clinical outcome. To have an idea of the genetic diversity of our C. difficile collection, strains were characterized first by PCR-ribotyping and subsequently by TRST (43). Most of the selected isolates (14; 67%) were of ribotype 027 (R027) and TRST type 027 (Table 2). The 7 other isolates represented 5 different ribotypes and 5 different TRST types (Table 2). Interestingly, no association between clinical outcome and strain type could be made, and the R027 isolates were found in all severity groups: mild to moderate (n = 8), severe (n = 2), and complicated (n = 4) (Table 2). TcdA and TcdB toxin genes were detected by PCR in all isolates (not shown), and the binary toxin genes cdtA and cdtB were detected in all R027 isolates, as previously reported (40), and in two non-R027 isolates, CD385 and CD398 (both ribotype 18 and TRST 19). Finally, the tcdC gene was sequenced for all isolates and compared to that of the reference strain VPI 10463 (ATCC 43255). All and only R027 isolates had the characteristic deletion at nucleotide 117 in addition to the 18-bp deletion (Table 2).

Antibiotic susceptibility testing. Susceptibilities to 9 different antibiotics were determined for all isolates, and MIC values are summarized in Table 3. According to the CLSI guidelines, all 21 isolates were resistant to CLI (MIC ≥ 256 μg/ml) and showed high MIC values for ceftriaxone (≥32 μg/ml) but were susceptible to MTZ, VAN, TZP, and TIGE. All R027 isolates were resistant to CIP, LVX, and MXF, while the non-R027 isolates were all susceptible (Table 3).

In vitro toxin production. To determine whether NAP1/027 isolates in our set produced more toxins than other isolates, we compared the total in vitro extracellular toxin production of the 21 isolates using an immunodot blot method that enabled us to discriminate TcdA and TcdB. Densitometry analysis of the spots was performed on three independent blots (only one example is shown in Fig. 1), and the mean density was calculated after including all values at 48 h for all strains. As shown in Fig. 1 and Table 2, R027 isolates generally produced larger amounts of both TcdA and TcdB toxins, and most density values were above the mean (387 AU for TcdA and 373 AU for TcdB). Among the R027 isolates, 7 (50%) had values above the 95% confidence interval (CI) for TcdA (292 to 483 AU) and 7 (50%) had values above the 95% CI for TcdB (292 to 455 AU) (Table 2). In contrast, all non-R027 isolates produced much less toxin and all values were below the lower limit of the 95% CI for both toxins, except for CD385, which produced TcdB amounts similar to those produced by R027 isolates (Table 2). Interestingly, the R027 isolate CD396 had density values for TcdA and TcdB similar to those produced by R027 isolates.

Sporulation rate. We performed a series of sporulation experiments in vitro to determine whether R027 isolates have greater sporulation capacities than non-R027 isolates. Interestingly, all non-R027 isolates except CD398 produced more spores after 48 h than the mean for all isolates (1.4 × 10^7 spores/ml) (Fig. 2 and Table 2). Moreover, 4 of these isolates (CD384, CD392, CD399, and CD402) had spore counts greater than the higher limit of the 95% CI (8.3 × 10^6 to 2.0 × 10^7 spores/ml). In contrast, 8 (57%) R027 isolates had a sporulation rate below the lower limit of the 95% CI, and only one R027 isolate (CD397) reached the mean sporulation rate, with 1.4 × 10^7 spores/ml (Fig. 2). Statistical analysis of the data showed that compared with R027 isolates, sporulation was significantly higher at 24 h for strain CD392 (P < 0.001). At 48 h, the difference was significant for strains CD392 (P < 0.001) and CD402 (P < 0.001), and at 72 h it was significant for...
strains CD384 (P < 0.01), CD392 (P < 0.01), and CD402 (P < 0.05) (Table 2).

DISCUSSION

A hypervirulent and epidemic strain called NAP1/027 has emerged over the last decade and has caused several outbreaks in North America and Europe (17, 20). These outbreaks have been associated with more severe disease symptoms, higher morbidity and mortality, and frequent relapses (23, 25, 30). This is generally thought to be due to increased toxin production (1, 40), increased sporulation capacity (1, 24), and resistance to fluoroquinolones (29) of the NAP1/027 strain. Hence, when a patient is infected with a NAP1/027 strain, it is generally assumed that the patient will experience more severe disease, with a higher risk of complication, relapse, and death. However, a growing number of studies suggest that this is not always true (7, 26, 42).

For example, Morgan et al. have compared severity of C. difficile disease for patients with R027 versus non-R027 ribotypes using a retrospective case-case study. The group included 123 patients admitted to a hospital in England during 2006. In a multivariable model, R027 was not associated with more severe disease than other PCR ribotypes (26). In a prospective study, Cloud and colleagues have typed by pulsed-field gel electrophoresis (PFGE) 236 isolates collected between 2004 and 2006 in a nonepidemic setting in a hospital in Boston, MA. NAP1 isolates composed 25% of their cohort, and in both univariate and multivariate analyses, patients infected with the NAP1 strain did not have worse outcomes than those infected with non-NAP1 strains (7). Wilson et al. have conducted a 1-year prospective study in England from 2007 to 2008. Of the 128 cases, 34 strains were R027, and again there was no association between this particular type and severe disease, relapse, early treatment failure, or attributable mortality (42). As suggested by Wilson et al., much of the evidence that NAP1/027 strains are more virulent and associated with more severe disease comes from studies involving outbreak settings (20, 23). Of the 21 isolates characterized in our setting, 14 corresponded to ribotype 027, and our data further support the conclusion that in nonepidemic settings, the NAP1/027 strains are not more virulent or associated with more severe disease and clinical outcome than other strains. Although our cohort was small compared to other epidemiological studies that addressed this question, our study was more exhaustive because it combined several molecular and phenotypic analyses that reinforce our conclusions.

Toxin production is an important virulence-associated phenotype, and previous studies suggested that R027 isolates produce more toxin in vitro (40), which led to the general assumption that NAP1/027 strains cause more severe disease (2, 24, 40). Warny et al. showed that toxin production by the epidemic NAP1/027 strain occurred earlier during growth and was stronger than that by nonepidemic toxinotype 0 strains (40). Curry et al. suggested that the Δ117 deletion in the tcdC gene led to severe truncation of TcdC, which probably explains the increased toxin production reported in NAP1/027 strains (9). However, Murray et al. also reported that two NAP1-related strains produced TcdA and TcdB earlier than five non-NAP1 strains, but the overall final toxin concentration in culture supernatants did not correlate with the presence or lack of the tcdC deletion (27). In two independent studies, Goldenberg and French (15) and Verdoorn et al. (38) came to the conclusion that tcdC deletions were not associated with disease severity or clinical outcome. In our study, all R027 isolates had the 18-bp and Δ117 deletions in tcdC and produced more toxins than non-R027 isolates in vitro, which is in agreement with the general observation mentioned above (24, 40). There were two exceptions, however: the R027 isolate CD396 produced smaller amounts of TcdA and TcdB despite the deletions, and strain CD385, a non-R027 isolate with a wild-type tcdC, had a TcdB production similar to that by R027 isolates, although the TcdA production was lower. It is noteworthy that strain ATCC 43255 (VPI 10463) has a wild-type tcdC gene and yet is a high toxin producer in vitro (reference 27 and our unpublished data). This further demonstrates that the sequence of tcdC alone should not be used to predict toxin production in vitro, although in our set there was a good correlation. The dynamics of toxin production have been shown to vary depending on the growth medium used and on the presence of rapidly metabolizable sugars such as glucose (12).
Consequently, one must be careful when comparing results from different studies using different media. It should also be kept in mind that in vitro studies may not reflect what happens in vivo during an infection and that regulation of toxin synthesis could be different and influenced by multiple factors, as pointed out previously (2, 14).

Our study also revealed that non-R027 isolates sporulated faster and to greater extents than R027 isolates. This is in contradiction with other reports that suggested that R027 isolates have better sporulation capacities than non-R027 isolates (1, 24, 41). It is noteworthy that toxin A and B production and sporulation rates were generally inversely related in our assays. Hence, NAP1/027 isolates produced more toxins but sporulated less, whereas non-R027 isolates produced less toxin, likely because they sporulated to higher levels. This is in agreement with a previous study by Akerlund et al. (2, 24).

Recently, Burns et al. reported that R027 isolates did not sporulate more than non-R027 isolates and, furthermore, that some R027 isolates sporulated less than other types (5). Discrepancies in the sporulation capacities reported for NAP1/027 and other strains of *C. difficile* may be explained by the various methods and media used to isolate and recover spores. For example, Burns and colleagues observed significant interstrain differences in sporulation frequencies depending on whether heat shock or microscopy was used to count spores (5). Along the same line, Rodriguez-Palacios and LeJeune observed that heating spore suspensions at 85°C for 15 min significantly reduced the number of colonies recovered compared to heating at 63 or 71°C (32). In another study by Burns et al., spores from strain R20291 (a NAP1/027 strain) were shown to germinate at 63 or 71°C (32). In another study by Burns et al., spores from strain R20291 (a NAP1/027 strain) were shown to germinate at 63 or 71°C (32). In another study by Burns et al., spores from strain R20291 (a NAP1/027 strain) were shown to germinate at 63 or 71°C (32).

Our study also revealed that non-R027 isolates sporulated less and produce more toxins than non-R027 strains, but no association was found between these phenotypes and CDI severity. Taken together, our data suggest that general assertions regarding the “hypervirulence” and “hypsersporulation” of NAP1/027 strains should be avoided, especially in nonepidemic settings. One major limitation of our study is the small sample size compared to those in other epidemiological studies. On the other hand, our in vitro toxin production and sporulation experiments were done on a more diversified and larger set of strains than in previous studies, which strengthens our conclusions.

ACKNOWLEDGMENTS

We thank Cylvée Bergeron and Eric Frost for critical reading of the manuscript.

This work was supported by a startup grant from the Fonds de la Recherche en Santé du Québec (FRSQ) (to L.-C.F.) and by a grant from the Fondation du Centre Hospitalier Universitaire de Sherbrooke (L.-C.F. is the recipient of a FRSQ Junior 1 research award).

REFERENCES

