Dried Culture Spots for Xpert MTB/RIF External Quality Assessment: Results of a Phase 1 Pilot Study in South Africa

L. E. Scott, 1* N. Gous, 1 B. E. Cunningham, 1 B. D. Kana, 2 O. Perovic, 3 L. Erasmus, 4 G. J. Coetzee, 4 H. Koornhof, 4 and W. Stevens 1,5

Department of Molecular Medicine and Haematology, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa; 1 Centre of Excellence for Biomedical TB Research, 2 Microbiology External Quality Assessment Reference Unit at NICD and CMID, University of the Witwatersrand, Johannesburg, South Africa; and National TB Reference Laboratory (NTBRL), 3 National Priority Program of the NHLS, 4 Johannesburg, South Africa

Received 19 July 2011/Returned for modification 24 August 2011/Accepted 25 September 2011

The Xpert MTB/RIF assay (Cepheid, Sunnyvale, CA) (1, 3–5, 9, 12, 13, 15, 19, 25) for the diagnosis of Mycobacterium tuberculosis has recently been endorsed by the WHO (28), and guidelines and recommendations for data collection to quantify the impact of this GeneXpert (GX) technology are provided (26). Guidance, however, with respect to appropriate external quality assessment (EQA) programs is lacking (17). Current international tuberculosis (TB) EQA programs focus on microscopy, culture, and susceptibility testing laboratories (24) and highlight the difficulties in expansion due to labor-intensive preparatory work and the high cost and regulations associated with shipping drug-resistant isolates (27).

Criteria for a verification (“fit for purpose”) and EQA program suited to the characteristics of the Xpert MTB/RIF assay (3, 8) will require the following elements. (i) The testing material must contain whole M. tuberculosis (8). (ii) Transportation of EQA material needs to be safe. (iii) The testing procedure needs to be safe and compatible with the Xpert MTB/RIF current testing protocol. (iv) Health care workers who do not have laboratory skills must be able to perform the testing in nonlaboratory settings. (v) Finally, the programs will need to be cost-effective and sustainable. Such a program using whole inactivated M. tuberculosis spotted onto filter paper was developed and piloted in South Africa as part of the National Health Laboratory Service (NHLS) GX rollout.

M. tuberculosis was obtained from (i) pooled samples from 20 microbial growth incubation tubes (MGIT) of rifampin (RIF)-susceptible clinical isolates and tested with the MTB-DRplus (Hain Life Sciences), (ii) 20 pooled MGIT cultures comprising American Type Culture Collection (ATCC) strain MYCTU-02-P2 (ATCC 25177 [H37Rv]) and well-characterized local clinical strain MYCTU 15, and (iii) the ATCC 25618 (H37Rv) laboratory strain grown for single-cell-organism suspensions (11). The MGIT cultures S-MYCTU-02-P2 and MYCTU 15 and clinical isolates were pooled in their respective batches (with strains kept separate and not mixed), centrifuged (3,000 × g for 15 min at 4°C) to pellet cells, and resuspended in 40 ml phosphate-buffered saline (PBS) followed by addition of 80 ml (2:1 ratio of buffer to culture) of the Xpert sample reagent (SR) buffer. For the H37Rv strain, 200 ml of culture was harvested (by centrifugation at 3,500 × g) at room temperature for 10 min, and cells were resuspended in PBS to 40 ml followed by addition of 80 ml SR buffer (2:1 ratio of buffer to cells). Both MGIT-grown and H37Rv strain cultures were inactivated in SR buffer for 2 h at room temperature, with intermittent mixing. The inactivated material was washed twice with sterile PBS and resuspended in final volumes of 10 ml (S-MYCTU-02-P2 and MYCTU 15) and 40 ml (H37Rv) PBS. For confirmation of inactivation, washed cultures (0.5 ml) were reincubated into new MGIT tubes in Bactec cabinets for 42 days. These inactivated bulk stocks were enumerated by flow cytometry (FC500 using Flow count microspheres; Beckman Coulter) and tested with the Xpert MTB/RIF assay. The cycle threshold (C_T) values of the semiquantitative categories (high, C_T of <16; medium, C_T of 16 to 22; low, C_T of 22 to 28; and very low, C_T of >28) were recorded for probe A and were compared to the flow cytometry enumeration score. Dilutions that generated a medium (C_T of 16 to 22) qualitative Xpert MTB/RIF result were used to prepare the dried culture spots (DCSs).

DCSs were prepared by spotting 25-μl amounts of inactivated culture material onto Whatman 903 filter cards (Merck) together with 2 μl of DNA loading dye (Sigma-Aldrich) per spot for visualization purposes, as illustrated in Fig. 1, and dried for 1 h at room temperature before being placed in sealed plastic bags with a desiccant sachet (Sigma-Aldrich).
These were couriered \((n = 16)\), hand delivered \((n = 10)\), or surface mailed (repeat DCSs to 4 sites) to various participating sites, where each spot was cut (using a sterile pair of scissors) into a 50-ml standard laboratory Nunc centrifuge tube (AEC Amersham), and 2.8 ml SR buffer (to ensure there was a sufficient 2-ml concentration to pipette into the Xpert MTB/ RIF cartridge after the DCS incubation) was added to the tube. The tubes were vortexed (or hand shaken by swirling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result for DCS batch no.:</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. tuberculosis bulk culture material</td>
<td>MGIT clinical controls (RIF-sensitive M. tuberculosis)</td>
</tr>
<tr>
<td>No. of GX modules tested by DCS</td>
<td>49 (all RIF-sensitive M. tuberculosis)</td>
</tr>
<tr>
<td>No. of errors(^b)</td>
<td>Error 5007</td>
</tr>
<tr>
<td>Error 5011</td>
<td>1</td>
</tr>
<tr>
<td>No. of DCSs for statistical analysis</td>
<td>48</td>
</tr>
<tr>
<td>% of testing in qualitative category:</td>
<td></td>
</tr>
<tr>
<td>Very low</td>
<td>0</td>
</tr>
<tr>
<td>Low</td>
<td>26.53</td>
</tr>
<tr>
<td>Medium</td>
<td>69.39</td>
</tr>
<tr>
<td>High</td>
<td>2.04</td>
</tr>
<tr>
<td>(C_T) for probe A</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>20.75</td>
</tr>
<tr>
<td>SD</td>
<td>2.20</td>
</tr>
<tr>
<td>CV (%)</td>
<td>10.6</td>
</tr>
</tbody>
</table>

\(^a\) A total of 161 modules returned results.

\(^b\) Error 5011 refers to signal loss detected in an amplification curve, and error 5007 refers to a probe check failure.
FIG. 2. Frequency distributions overlaid with normal curves of the C_T values for probe A from the three DCS batches. (A) Batch V002; (B) batch V004; (C) batch V005. The standard deviation and mean C_T values are represented in insets in each of the panels.
vigorously if no vortexer was available) and left at room temperature for 15 min with intermittent mixing. One DCS was then tested on each Xpert MTB/RIF module. The C_T mean, standard deviation, and coefficient of variation (CV) were calculated for probe A.

Three DCS batches were manufactured for 31 GXs: GX Infinity-48 ($n = 1$), GX16 ($n = 9$), and GX4 ($n = 21$). A total of 286 DCSs were distributed to the 26 participating sites, and results were received for 274 DCSs, thereby identifying sites with nonconformities. Six testing errors (error no. 5011 of 286 DCSs were distributed to the 26 participating sites, and T-H11005 $M. tuberculosis$ amplification sensitivity (Table 1). Probe A was the first probe to reach the T-H11005 n standard deviation, and coefficient of variation (CV) were calculated then tested on each Xpert MTB/RIF module. The T-H11005 temperature for 15 min with intermittent mixing. One DCS was then tested 3 times per year. A total of 21. A total T-H11005 21. A total

The variability in C_T values may result from the spotting technique, different DCS reconstitution techniques (including vortexing/hand shaking), and variability in the amount of SR buffer added to each DCS. Other sources of variability may be explained by $M. tuberculosis$ clumping from the MGIT-grown cultures being better trapped by the Xpert MTB/RIF filter membrane, whereas an $M. tuberculosis$ single cell ($\sim 0.4 \mu m$ wide by $1.0 \mu m$ long) may pass through the 0.8-μm membrane pore. The advantage of single-cell-cultured material is that no sonication or declumping methods are required before flow cytometry enumeration and spotting.

Future design of an Xpert MTB/RIF EQA program could be similarly based on line probe assay programs using one pansusceptible strain, one RIF-mono-resistant strain with a common rpoB mutation, one multidrug-resistant (MDR) strain, one nontuberculous mycobacterium (NTM) strain, and a negative control (17), each placed on a DCS card and distributed 3 times per year.

This publication was made possible by the generous support of the American people through the U.S. Agency for International Development, the South Africa Tuberculosis and AIDS Training (SATBAT) program (National Institutes of Health/Fogarty International Center) (5U2RTW007370 and 5U2RTW007373), the National Research Foundation/Department of Science and Technology, and the South African Medical Research Council. We thank Beckman Coulter South Africa for the donation of the flow cytometry platform.

We thank Mara Gibson from Contract Laboratory Service.

The contents are the responsibility of the authors and do not necessarily reflect the views of USAID or the US government.

REFERENCES

