This study shows the benefit of spoligotyping coupled to mycobacterial interspersed repetitive-unit (MIRU) typing to pinpoint circulating *Mycobacterium tuberculosis* genotypes in Guadeloupe, Martinique, and French Guiana. We hereby propose reduced 4-locus and 6-locus subsets for LAM and Haarlem lineage strains that predominate in South America and the Caribbean, retaining 99.35% and 99.64% of the total discriminatory power of the 12-locus scheme, respectively.

The present investigation provides an improved phylogenetic characterization of existing *Mycobacterium tuberculosis* transmission chains in Guadeloupe, Martinique, and French Guiana. It also aimed to estimate the benefit of 12-locus mycobacterial interspersed repetitive-unit (MIRU) typing coupled to spoligotyping and to select a reduced MIRU locus typing scheme for an efficient subtyping of clusters belonging to LAM and Haarlem lineages that predominate in South America and the Caribbean (1, 3–5, 13).

Under a longitudinal universal genotyping program covering a 2-year period (January 2004 to December 2005), all culture-positive tuberculosis (TB) cases (*n* = 176) from Guadeloupe (*n* = 54), Martinique (*n* = 32), and French Guiana (*n* = 90) were studied. Mycobacterial identification, drug susceptibility testing, spoligotyping, and 12-locus MIRU typing were performed as reported earlier (4, 11, 14, 16). Additional typing schemes were used retrospectively to compare a subset of strains by using 5 exact tandem repeat (ETR) loci (8) and discriminatory power of a typing scheme for a given set of strains, this program calculates the discriminatory ability of each possible combination of MIRUs by subtracting 1 locus at a time (12 loci, then 11 loci, and so on), until a single locus is left.

Spoligotyping allowed a first-line screening of the clinical isolates and lineage assignments (Fig. 1A to C and Table 1; see Tables S1 to S3 in the supplemental material for demographic characteristics of patients, drug resistance of *M. tuberculosis* clinical isolates, and detailed typing results). A total of 76 patterns obtained corresponded to 30 clusters (130 strains [73.9%]; 2 to 25 strains/cluster) and 46 (26.1%) unique patterns with 8 orphans. The bulk of genotypes in our study (129/176 [73.3%]) concerned 3 families: evolutionarily recent LAM (25%), Haarlem (23.9%), and ill-defined T clades (24.4%). MIRU typing was performed on all the 176 strains; however, 22 strains with incomplete profiles were excluded from the analysis (see Table S2 in the supplemental material); 97 patterns obtained corresponded to 24 clusters (81 strains [52.6%]; 2 to 15 strains/cluster) and 73 (47.4%) unique patterns with 58 orphans. Combined spoligotyping and MIRU analysis grouped 58/154 (37.7%) strains in 20 clusters (2 to 11 strains per cluster), while 96 strains were unclustered.

The combined numerical analysis of isolates clustered by spoligotyping for which MIRU data were available (*n* = 109) is summarized in Fig. S1 in the supplemental material. It additionally shows all single-locus (SLVs) and double-locus (DLVs) variants, representing strains differing in copy numbers for 1 or 2 MIRU loci for enhanced cluster analysis, respectively. As can be seen, MIRU loci 26 and 31 were the most important contributors to the locus variations observed. Four clusters were specific for Guadeloupe: 2 with identical patterns (SIT5-MIT15 and SIT99-MIT131) and 2 SLVs (SIT93-MIT25/MIT738 and SIT42-MIT25/MIT738). We also detected introduction of the Beijing genotype (SIT1) in Martinique, in 2 young and epidemiologically linked (epi-linked) patients (a brother and sister < 18 years of age), for the first time since 1994 (4). However, the 2 strains differed by 3-copy changes upon 12-locus MIRU typing (MIT721 and MIT1049). Finally, 9 clusters were specific to French Guiana, among which 2 concerned patients born in Brazil but living in French Guiana (SIT176-MIT801 and DLVs SIT95-MIT898/MIT1052). Lastly,
none of the clusters was made up of only multiple-drug-resistant (MDR) isolates; however, 2 clusters of 2 isolates each, SIT5-MIT15 and SIT75-MIT42, found in Guadeloupe and French Guiana, respectively, contained single MDR strains as a result of acquired drug resistance.

As summarized in Table 1, the discriminatory power of typing methods used alone or in combination increased in the order 5-locus ETR typing (least discriminatory power), spoligotyping, and then 12-locus MIRU (most discriminatory power), achieving an HGDI of 0.992 for spoligotyping plus 12-locus MIRU typing (subset B, with 154 isolates). In subset C (with 97 isolates), with additional data on 5 ETR loci, the highest HGDI was 0.994 for the combination of all markers pooled together. These results argue in favor of a two-step approach for large-scale, prospective genotyping of M. tuberculosis based on spoligotyping and MIRU–variable-number tandem-repeats (VNTRs) (6, 9). We further decided to evaluate the potential of additional MIRU-VNTRs (15) by screening a subset containing 13 SIT-MIT clusters (n = 36; 2 to 7 strains per cluster). As summarized in Table S3 in the supplemental material, only 4 out of 13 clusters did not subdivide. Thus, the use of additional loci reduced the clustering by 52.8% to as few as 6 clusters (17 strains; 2 to 5 strains per cluster).

Last but not least, we attempted to define a minimal subset of MIRU loci allowing satisfactory discrimination of strains of the 2 largest clades in the present study, i.e., LAM and Haarlem. Figure 1D to F summarize the performance of each of the individual MIRU loci compared to the discriminatory power of the 12-locus typing scheme for the Haarlem (n = 37; HGDI = 0.836) (Fig. 1D) and LAM (n = 39; HGDI = 0.918) (Fig. 1E) lineage strains (as a percentage). Data for the whole sample are shown as a reference in Fig. 1F (n = 154; HGDI = 0.983). Using MIRU-Selector, we were able to define reduced 6-locus (MIRU loci 10, 20, 23, 31, 39, and 40), and 4-locus (MIRU loci 10, 26, 31, and 40) typing schemes for studying specifically the Haarlem and LAM lineage strains. In our sample, these schemes allowed us to achieve 99.64% (HGDI = 0.838) and 99.35% (HGDI = 0.912) of the total discriminatory power of the full 12-locus scheme, respectively.

As indicated previously (4), Haarlem (23.9%), LAM (25%), and the T family (24.4%) constituted the 3 major clades in our sample. These results argue in favor of a two-step approach for large-scale, prospective genotyping of M. tuberculosis based on spoligotyping and MIRU–variable-number tandem-repeats (VNTRs) (6, 9). We further decided to evaluate the potential of additional MIRU-VNTRs (15) by screening a subset containing 13 SIT-MIT clusters (n = 36; 2 to 7 strains per cluster). As summarized in Table S3 in the supplemental material, only 4 out of 13 clusters did not subdivide. Thus, the use of additional loci reduced the clustering by 52.8% to as few as 6 clusters (17 strains; 2 to 5 strains per cluster).

Last but not least, we attempted to define a minimal subset of MIRU loci allowing satisfactory discrimination of strains of the 2 largest clades in the present study, i.e., LAM and Haarlem. Figure 1D to F summarize the performance of each of the individual MIRU loci compared to the discriminatory power of the 12-locus typing scheme for the Haarlem (n = 37; HGDI = 0.836) (Fig. 1D) and LAM (n = 39; HGDI = 0.918) (Fig. 1E) lineage strains (as a percentage). Data for the whole sample are shown as a reference in Fig. 1F (n = 154; HGDI = 0.983). Using MIRU-Selector, we were able to define reduced 6-locus (MIRU loci 10, 20, 23, 31, 39, and 40), and 4-locus (MIRU loci 10, 26, 31, and 40) typing schemes for studying specifically the Haarlem and LAM lineage strains. In our sample, these schemes allowed us to achieve 99.64% (HGDI = 0.838) and 99.35% (HGDI = 0.912) of the total discriminatory power of the full 12-locus scheme, respectively.

As indicated previously (4), Haarlem (23.9%), LAM (25%), and the T family (24.4%) constituted the 3 major clades in our sample. These results argue in favor of a two-step approach for large-scale, prospective genotyping of M. tuberculosis based on spoligotyping and MIRU–variable-number tandem-repeats (VNTRs) (6, 9). We further decided to evaluate the potential of additional MIRU-VNTRs (15) by screening a subset containing 13 SIT-MIT clusters (n = 36; 2 to 7 strains per cluster). As summarized in Table S3 in the supplemental material, only 4 out of 13 clusters did not subdivide. Thus, the use of additional loci reduced the clustering by 52.8% to as few as 6 clusters (17 strains; 2 to 5 strains per cluster).

Last but not least, we attempted to define a minimal subset of MIRU loci allowing satisfactory discrimination of strains of the 2 largest clades in the present study, i.e., LAM and Haarlem. Figure 1D to F summarize the performance of each of the individual MIRU loci compared to the discriminatory power of the 12-locus typing scheme for the Haarlem (n = 37; HGDI = 0.836) (Fig. 1D) and LAM (n = 39; HGDI = 0.918) (Fig. 1E) lineage strains (as a percentage). Data for the whole sample are shown as a reference in Fig. 1F (n = 154; HGDI = 0.983). Using MIRU-Selector, we were able to define reduced 6-locus (MIRU loci 10, 20, 23, 31, 39, and 40), and 4-locus (MIRU loci 10, 26, 31, and 40) typing schemes for studying specifically the Haarlem and LAM lineage strains. In our sample, these schemes allowed us to achieve 99.64% (HGDI = 0.838) and 99.35% (HGDI = 0.912) of the total discriminatory power of the full 12-locus scheme, respectively.

As indicated previously (4), Haarlem (23.9%), LAM (25%), and the T family (24.4%) constituted the 3 major clades in our sample.
setting. Strains of the EAI lineage were found mainly in patients living in French Guiana (9/10 patients), with SIT1340 (EAI6-BGD1 sublineage) being predominant 4/9 strains). According to the SITVIT2 database, 41 strains were reported to contain in Suriname, where it represents as high as 16% of all M. tuberculosis isolates (our unpublished observations). Hence, the SIT1340 strains may represent an emerging transborder M. tuberculosis clone in French Guiana. The presence of the X strains, of presumed Anglo-Saxon origin (4), in all the 3 French departments of the Americas and the Caribbean territories probably reflects the history of this geographical area. Lastly, despite a decrease in the proportion of drug-resistant strains and MDR compared to the observations in a previous study (4), the detection of the Beijing genotype in Martinique and French Guiana must be taken with utmost care, since it is often associated with development of drug resistance (2, 7).

We thank colleagues at various university hospitals, local clinics, dispensaries, health services, and research institutions for their precious collaboration. We are grateful to colleagues at Institut Pasteur de la Guadeloupe for their precious help regarding identification and genotyping and database comparison (C. Sola, B. Prudente´), for genotyping and database comparison (C. Sola, B. la Guadeloupe for their precious help regarding identification and cious collaboration. We are grateful to colleagues at Institut Pasteur de associated with development of drug resistance (2, 7).

TABLE 1. Discriminatory power of various typing methods used alone and in combination on different subsets of M. tuberculosis clinical isolates

<table>
<thead>
<tr>
<th>Subset (no. of isolates)</th>
<th>Typing method(s)*</th>
<th>No. of distinct profiles</th>
<th>No. of unique profiles</th>
<th>No. (size) of clusters</th>
<th>No. (%) of clustered isolates</th>
<th>Recent transmission rate (%)</th>
<th>HGDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (176)</td>
<td>Spoligotyping</td>
<td>76</td>
<td>46</td>
<td>30 (2-25)</td>
<td>130 (73.9)</td>
<td>56.8</td>
<td>0.964</td>
</tr>
<tr>
<td>B (154)</td>
<td>Spoligotyping</td>
<td>71</td>
<td>45</td>
<td>26 (2-22)</td>
<td>109 (70.8)</td>
<td>53.9</td>
<td>0.964</td>
</tr>
<tr>
<td>C (97)</td>
<td>Spoligotyping</td>
<td>51</td>
<td>34</td>
<td>17 (2-15)</td>
<td>63 (64.9)</td>
<td>47.4</td>
<td>0.960</td>
</tr>
<tr>
<td></td>
<td>12-loci MIRU typing</td>
<td>97</td>
<td>73</td>
<td>24 (2-15)</td>
<td>81 (52.6)</td>
<td>37.0</td>
<td>0.983</td>
</tr>
<tr>
<td></td>
<td>Spoligotyping and 12-locus MIRU typing</td>
<td>116</td>
<td>96</td>
<td>20 (2-11)</td>
<td>58 (37.9)</td>
<td>24.7</td>
<td>0.992</td>
</tr>
<tr>
<td></td>
<td>Spoligotyping and 5-locus ETR typing</td>
<td>71</td>
<td>61</td>
<td>10 (2-11)</td>
<td>36 (37.1)</td>
<td>26.8</td>
<td>0.983</td>
</tr>
<tr>
<td></td>
<td>Spoligotyping and 12-locus MIRU typing</td>
<td>71</td>
<td>57</td>
<td>14 (2-8)</td>
<td>40 (41.2)</td>
<td>26.8</td>
<td>0.988</td>
</tr>
<tr>
<td></td>
<td>Spoligotyping, 12-locus MIRU typing, and 5-locus ETR typing</td>
<td>80</td>
<td>70</td>
<td>10 (2-6)</td>
<td>27 (27.8)</td>
<td>17.5</td>
<td>0.994</td>
</tr>
</tbody>
</table>

* The five ETR loci corresponded to exact tandem repeats A, B, C, D, and E according to Frothingham and Meeker-O’Connell (8).

REFERENCES