Real-Time Multiplex PCR for Detecting Shiga Toxin 2-Producing Escherichia coli O104:H4 in Human Stools

Wenlan Zhang,a Martina Bielaszewska,a Andreas Bauwens,a Angelika Fruth,b Alexander Mellmann,a,c and Helge Karcha,c

Institute for Hygiene and the National Consulting Laboratory for Hemolytic Uremic Syndrome, University of Münster, Münster, Germany; National Reference Center for Salmonella and Other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany; and Interdisciplinary Center of Clinical Research (IZKF), University of Münster, Münster, Germany

A real-time multiplex PCR targeting stx2, wzyO104, and fliC144 of enterohemorrhagic Escherichia coli (EHEC) O104:H4 correctly determined the presence or absence of these genes in 253 EHEC isolates and enrichment cultures of stool samples from 132 patients. It is a rapid, sensitive, and specific tool for detecting EHEC O104:H4 in human stools.

Received 27 December 2011 Returned for modification 24 January 2012 Accepted 6 February 2012 Published ahead of print 15 February 2012

Address correspondence to Helge Karch, hkarch@uni-muenster.de.

Supplemental material for this article may be found at http://jcm.asm.org/

Copyright © 2012, American Society for Microbiology. All Rights Reserved.
doi:10.1128/JCM.06817-11
were enriched for 4 h in GN broth Hajna (Difco Laboratories, Detroit, MI) and a 100-µl volume was plated on individual plates of sorbitol MacConkey agar (Becton Dickinson, Heidelberg, Germany), enterohemolysin agar (Sifin, Berlin, Germany), and extended-spectrum β-lactamase agar (chromID ESBL; bioMérieux, Nurtingen, Germany). The overnight growth from the plates was washed into 1 ml of 0.9% NaCl solution and boiled for 10 min; 1 µl of the total extracted DNA (diluted 1:10 in sterile water) was used per 20 µl of rtMPCR volume. Eighty-three (62.9%) of the 132 stool enrichment cultures contained the EHEC O104:H4 outbreak strain, as demonstrated by conventional multiplex PCR (3) and subsequent isolation of the strain, which was used as the gold standard to which results of the rtMPCR were compared. Each of the 83 cultures produced all three amplicons (wzy O104, stx2, and fliC H4) in the rtMPCR. The remaining 49 enrichment cultures lacked the outbreak strain in both the conventional multiplex PCR and culture on ESBL agar. Thirty-eight of them yielded none of the three amplicons, whereas 11 yielded the stx2 amplicon only; various stx2-positive non-O104:H4 E. coli strains were subsequently isolated from these 11 samples. The detection limit of the rtMPCR for identification of EHEC O104:H4 in stool cultures was determined by spiking three different human O104:H4-negative stools enriched for 4 h in GN broth Hajna with 10-fold dilutions (10^1 to 10^10 CFU/ml) of EHEC O104:H4 outbreak strain LB226692 (3, 11), growing 100 µl of the mixtures on ESBL agar and Luria-Bertani agar plates at 37°C overnight, extracting total DNA from bacteria washed from the plates by boiling for 10 min, and using 1 µl of the DNA in rtMPCR. The detection limit of the rtMPCR was 7 × 10^2 (range, 1 × 10^2 to 1 × 10^3) CFU/ml of EHEC O104:H4 on the background of 4.2 × 10^7 (range, 7 × 10^6 to 6 × 10^7) CFU/ml of normal coliform intestinal flora. The detection limit of the test for EHEC O104:H4 strain LB226692 in pure culture was 1.6 × 10^2 CFU/ml.

The rtMPCR developed here has 100% specificity and 100% sensitivity for the detection of EHEC O104:H4 in human stool samples compared to culture (i.e., isolation of the strain) and for identification of EHEC O104:H4 isolates compared to serotyping. Although the EHEC O104:H4 outbreak is over, this assay can be utilized in diagnostic laboratories in Germany, in particular, in those specialized for detection of EHEC, because sporadic cases of infection with the outbreak strain still rarely occur in this country (our unpublished data). Also, the rtMPCR represents a rapid and reliable tool for epidemiological studies to determine the prevalence of EHEC O104:H4 in the human population, which is considered the major (if not the only) reservoir of this pathogen (1). Moreover, because the rtMPCR detects stx2 and its variants present in HUS-associated as well as diarrhea-associated EHEC (see Tables S1 and S2 in the supplemental material), it will also detect non-O104:H4 EHEC causing human disease. Thus, stool samples positive only for stx2 in the rtMPCR, as was the case for the sam-

TABLE 1 Primers for real-time multiplex PCR to identify stx2-harboring E. coli O104:H4

<table>
<thead>
<tr>
<th>Primera</th>
<th>Sequence (5’→3’)</th>
<th>Concentration (nM) per reactionb</th>
<th>Target</th>
<th>Amplicon size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O104wzy-f</td>
<td>GGTATGTTCTGCTGTCTTGC</td>
<td>225</td>
<td>wzyO104</td>
<td>154</td>
</tr>
<tr>
<td>O104wzy-r</td>
<td>GTAATACTTGTGTACGATGG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-stx2F</td>
<td>GTAGACTCAAGGCCCTGGATT</td>
<td>100</td>
<td>stx2</td>
<td>106</td>
</tr>
<tr>
<td>RT-stx2R</td>
<td>GGGCAACTAGGCCTCTGGCTG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fliCH4-a</td>
<td>GCGCAAAGTTCCACACCAGC</td>
<td>75</td>
<td>fliC H4</td>
<td>201</td>
</tr>
<tr>
<td>fliCH4-b</td>
<td>GCACCAAGTTACCCAGC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Primers for wzyO104 and stx2 were designed in this study. Primers for fliC H4 were described previously (3).

b The primer concentrations were optimized to obtain melting peaks of similar intensities.

FIG 1 Real-time multiplex PCR for the detection and identification of EHEC O104:H4. Data represent amplification of wzyO104, stx2, and fliC H4 in prototypic EHEC O104:H4 outbreak isolate LB226692 (3, 11), HUSEC041 (O104:H4), HUSEC037 (O104:H21), and HUSEC003 (O157:H7) by the use of the real-time MPCR. Melting peaks of the wzyO104, stx2, and fliC H4 amplicons at 75.2°C, 80.2°C, and 83.6°C, respectively, are shown. C600, E. coli K-12 C600; NTC, no-template control.
ples from the 11 patients described above, need to be further inves-
tigated for EHEC of other serotypes in order to detect both
known and possibly new, emerging EHEC strains. Preliminary
information about the presence of an EHEC strain in the stool
within 24 h, as provided by the rtMPCR, is critical for epidemi-
ological purposes, in particular, for “real-time” monitoring of
spread of the infection and tracing it back to the source. From the
therapeutic standpoint, rapid detection of evidence of EHEC
O104:H4 infection may provide a basis for applying, in addition
to general therapeutic strategies used for EHEC infections (increas-
ing the volume of intravenous fluids and avoiding antibiotic ad-
ministration) (9, 17), additional, more specialized approaches
such as were successfully used during the EHEC O104:H4 out-
break (8). The method described here extends the real-time mul-
tiplex PCRs available for detecting EHEC O104:H4 in food (5, 18)
for the first time to rapid detection of the strain in human stools.
rtMPCRs for detecting other members of the HUSEC collection
are under development.

ACKNOWLEDGMENTS

This study was supported by grants from the Interdisciplinary Center
of Clinical Research (IZKF) Münster (Me2/021/12) and the Medical Faculty
of the University of Münster (BD9817044).

We thank Ralph Fischer and Andrea Lagemann for technical assis-
tance.

REFERENCES

coli (STEC) O104:H4 infection in Germany causes a paradigm shift with
regard to human pathogenicity of STEC strains. J. Food Prot. 75:408–418.
2006. Shiga toxin activatable by intestinal mucus in Escherichia coli iso-
Dis. 43:1160–1167.
strain associated with an outbreak of haemolytic uraemic syndrome in Ger-
5. EReference Laboratory for Ecoli (EU-RL VTEC). 2 June 2011, posting
date. Detection and identification of verocytotoxin-producing Escherichia coli
(VTEC) O104:H4 in food by real time PCR. Istituto Superiore di Sanità, Rome, Italy.
7. Gilmour MW, Olson AB, Andrysiak AK, Ng L, Chui L. 2007. Sequence-
based typing of genetic targets encoded outside of the O-antigen gene
cluster is indicative of Shiga toxin-producing Escherichia coli serogroup
IgG depletion through immunoabsorption in patients with Escherichia
coli O104:H4-associated haemolytic ureamic syndrome: a prospective
relative nephroprotection during subsequent hemolytic uremic syn-
German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid
Escherichia coli strains using flagellar H-antigens: serotyping versus fliC
coli O104:H4 strain responsible for a food poisoning outbreak in Germany
epidemiological findings in the EHEC O104:H4 outbreak, Germany 2011.
Robert Koch Institute, Wernigerode, Germany. http://www.rki.de/clin
15. Schmidt H, et al. 2000. A new Shiga toxin 2 variant (Stx2f) from Esche-
possible reservoir of Shiga toxin 2f-producing Escherichia coli pathogenic
detection and isolation of enterohaemorrhagic Escherichia coli (EHEC)
serogroup O26, O103, O111, O118, O121, O145 and O157 strains and the
aggregate EHEC O104:H4 strain from ready-to-eat vegetables. Int. J.
disease-associated genes of enterohaemorrhagic Escherichia coli O111. Int.

1754 jcm.asm.org Journal of Clinical Microbiology