Azole-Resistant Aspergillus fumigatus Isolate with the TR34/L98H Mutation in Both a Fungicide-Sprayed Field and the Lung of a Hematopoietic Stem Cell Transplant Recipient with Invasive Aspergillosis

Steffi Rocchi,a,b Etienne Daguindau,c Frédéric Grenouillet,a,b Eric Deconinck,c,d Anne-Pauline Bellanger,a,b Dea Garcia-Hermoso,e Stéphane Bretagne,e Gabriel Rebourx,a,b Laurence Millon,a,b

Chrono-Environment UMR 6249 CNRS, Franche-Comté University, Besançon, France; Parasitology-Mycology Departmenta and Clinical Hematology Department,e University Hospital, Besançon, France; INSERM UMR 1098, Franche-Comté University, Besançon, France; Instituto Pasteur, Unité de Mycologie Moléculaire, Centre National de Référence Mycologie et Antifongiques and CNRS URA3012, Paris, France

A French farmer developed invasive aspergillosis with azole-resistant Aspergillus fumigatus with the TR34/L98H mutation following a hematopoietic stem cell transplantation. He had worked in fungicide-sprayed fields where a non-genetically related A. fumigatus TR34/L98H isolate was collected. If azole resistance detection increases, voriconazole as first-line therapy might be questioned in agricultural areas.

Despite improvements in diagnosis and therapy, invasive aspergillosis (IA) still has a poor prognosis in hematological patients. The first-line treatment of IA is usually azole antifungals. Voriconazole yields response and survival rates 15 to 20% higher than those of nonazole regimens (1). However, in recent years, azole resistance in Aspergillus fumigatus has been increasingly reported in probable association with azole failure (2, 3). In the Netherlands, the main mechanism suggested in hematology is the acquisition of resistant isolates from the environment due to the increasingly extensive use of 14-alpha-demethylase inhibitor fungicides in agriculture (4). The presence of the TR34/L98H azole resistance mechanism has been increasingly reported in clinical and environmental A. fumigatus isolates throughout Europe (Netherlands, United Kingdom, Norway, Spain, Denmark, Belgium, France, Germany) and Asia (India, China, Iran) (see references 5 and references therein). To date, only a few cases of IA due to a resistant strain of A. fumigatus with the TR34/L98H mutation have been described (3, 6, 7). Documenting such cases is important, since it may lead to a reappraisal of voriconazole as first-line therapy if the risk of contracting azole resistance increases.

A 63-year-old farmer in Franche-Comté, France, was diagnosed with severe aplastic anemia in 1997 and received an allogeneic hematopoietic stem cell transplant (allo-HSCT) in January 2011. The patient experienced reactivation of chronic graft-versus-host disease (GVHD) at month 4 posttransplantation (M4), which required an increase and maintenance of a continuous dose of corticoids. On 26 April 2012 (M16), he was diagnosed with probable IA according to the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) criteria. Radiological investigation using high-resolution computed tomography (CT) showed one nodule in the left upper lobe of the lung. A positive Aspergillus antigen was detected in serum the same day (using an index of 0.5 as a positive threshold [Platelia Aspergillus sandwich enzyme-linked immunosorbent assay; Bio-Rad, Marnes la Coquette, France]). Mycological examination showed a positive culture of A. fumigatus from sputum. Because the patient had received oral azole antifungal prophylaxis for 16 months (voriconazole from January to April 2011, 200 mg twice daily, and then posaconazole from May 2011, 200 mg three times daily), antifungal therapy was initiated with a combination of liposomal amphotericin B (3 mg/kg of body weight/day) and caspofungin (50 mg/day). Although a second A. fumigatus isolate was obtained from sputum 15 days after the first one, clinical improvement was shown. A second episode of IA was diagnosed in July 2013 (nodules on CT and positive galactomannan), but no strain was isolated. The patient died in August 2013 of multivisceral failure due to extensive chronic GVHD.

The two clinical isolates showed the same resistance pattern using the EUCAST method, i.e., resistance to itraconazole (MIC, >8 µg/ml) and to voriconazole (MIC, 4 µg/ml). Sequencing the complete CYP51A gene as previously described (8) revealed the presence of the 34-bp tandem repeat and the L98H mutation in both isolates.

Environmental samples were collected from inside and around the patient’s house (Fig. 1). Air samples (250 liters or 500 liters) were taken from four rooms (six air samples from each room) and from six points around the house with a MAS 100 impactor. Eighteen samples of soil, leaves, moss, and twigs, three samples of hay, and one sample of straw were collected along with dust from tractor filters. All the samples were cultured on DG18 medium and on malt agar supplemented with 4 mg/liter of itraconazole medium and incubated at 30°C, 37°C, and 48°C.

A total of 145 A. fumigatus isolates were obtained (20 isolates from the indoor environment and 125 from the outdoor environ-
Only one isolate grew on itraconazole-malt agar. This isolate was obtained from one field previously sprayed with fungicides and where manure was applied 2 months before sampling. The patient reported use of the fungicides prothioconazole (1.25 liters/ha) and epoxiconazole (2.5 liters/ha), which he had sprayed twice a year in his wheat fields and once a year in his barley fields, as recommended by the manufacturers. The resistance pattern was similar to those of the two clinical isolates from the patient (itraconazole \([\text{MIC}, >8 \mu g/ml]\) and voriconazole \([\text{MIC}, 4 \mu g/ml]\)). Sequence analysis of the \(\text{CYP51A}\) gene showed the TR34/L98H mutation.

Genotyping was performed using microsatellite analysis as previously described (9). Microsatellite analysis of the two itraconazole-resistant isolates from the patient indicated that they were microvariants, i.e., they had differences of two repeat units at only a single locus out of the four tested (10). The environmental isolate was different for two of the four loci tested and was not genetically related to the clinical isolates. An extensive environmental analysis should be performed to determine whether this environmental azole-resistant isolate is more closely related to the clinical isolates than to other environmental ones, which would then suggest a clonal expansion of the azole-resistant isolates (11).

Only 10 reports have described azole-resistant \(A.\ fumigatus\) isolates with the TR34/L98H mutation, and these reports involved 10 IA patients with different underlying diseases: 7 hematology patients (1 with chronic myeloid leukemia, 3 with acute myeloid leukemia, 2 with non-Hodgkin lymphoma, and 1 with an other hematologic malignancy), of whom 5 underwent an allo-HSCT, and 1 patient with lung carcinoma, 1 patient with breast carcinoma, and 1 patient with liver transplantation (3, 6, 7). The French patient described here was an allo-HSCT recipient with chronic GVHD. He was an outpatient in the hematology unit and spent most of his time in his house, which was located in a very rural area. He reported using azole fungicides to grow cereal crops for many years.

The patient had also received extensive azole therapy (for >1 year), so the question of an acquired resistance mechanism can be raised. To date, only point mutations have developed in azole-resistant isolates through patient therapy. The TR34/L98H resistance mechanism observed in our patient includes a combination of genomic changes (tandem repeat and a point mutation), which is more likely to occur in the environment (2, 3). Therefore, although an acquired resistance mechanism within his lungs cannot be formally ruled out to explain the resistance observed, the most likely explanation is the selection under azole prophylaxis of one \(A.\ fumigatus\) TR34/L98H strain among several from the environment.

Given the high genotypic diversity of \(A.\ fumigatus\) (9), the probability of recovering the same genotype from the patient and his environment was very low, and we did not succeed in doing so despite collecting 145 isolates. However, our environmental sampling confirmed the presence of the TR34/L98H mutation in agricultural areas where large amounts of triazole fungicides are widely used. The amount of the five molecules involved in TR34/L98H resistance (epoxiconazole, tebuconazole, propiconazole, difenoconazole, bromuconazole) in 2012 in the Franche-Comté region was 0.62 kg/km² (Regional Forest and Agriculture Department [DRAAF-BNV-D], personal communication), which is quite similar to that used in the Netherlands (0.86 kg/km²) (12).

TR34/L98H strains were first detected in the Netherlands and then subsequently in numerous European countries and in Asia. The other recently described fungicide-driven route of the resistance mechanism TR46 Y121F/T289A, also found in hematology patients with IA, can easily spread further (13). Since more and
more immunocompromised patients are outpatients and given the growing use of the five molecules involved in such mutations, we can expect a higher risk of inhaling azole-resistant isolates and an increase in IA with azole-resistant isolates. Therefore, liposomal amphotericin B should be regarded as an alternative to voriconazole (14).

Our study shows that even in a low prevalence area (0.7% [1/145]) an immunosuppressed patient is likely to be infected with an environmental azole-resistant strain. If the number of similar observations increases in the future, the challenge will be to reconsider voriconazole as first-line therapy, especially in patients living in agricultural areas, since reducing the use of key triazole fungicides in agriculture seems unlikely.

ACKNOWLEDGMENT

We thank Pamela Albert for her editorial assistance.

REFERENCES