Multiplex PCR Assay for Identification of Six Different Staphylococcus spp. and Simultaneous Detection of Methicillin and Mupirocin Resistance

Unidad de Investigación and Servicio de Microbiología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain; Departamento de Microbiología, Universidad de La Laguna, La Laguna, Spain

We describe a new, efficient, sensitive, and fast single-tube multiple-PCR protocol for the identification of the most clinically significant Staphylococcus spp. and the simultaneous detection of the methicillin and mupirocin resistance loci. The protocol identifies at the species level isolates belonging to S. aureus, S. epidermidis, S. haemolyticus, S. hominis, S. lugdunensis, and S. saprophyticus.

Humans are the main natural reservoir of the Gram-positive coagulase-positive bacterium Staphylococcus aureus (1). The continuous accumulation of resistance and virulence factors in this species has resulted in a worldwide health concern due to an associated increase in morbidity and mortality (1, 2, 3). Hospital infections by this agent are particularly concerning, especially in those patients who are at risk for complications (i.e., immunocompromised patients, pregnant women, newborns and babies, cancer patients, individuals at dialysis programs, and transplant recipients, etc.) (4). Several methicillin-resistant S. aureus (MRSA) clones constitute a global alarm, often being epidemic or even a cause of pandemics (5, 6). However, within the genus Staphylococcus, S. aureus is not the only species that constitutes a worrisome pathogen. Thus, several coagulase-negative members of the genus are the etiological agents of diverse hospital-acquired severe infections. The most clinically significant examples are the species S. epidermidis, S. saprophyticus, S. lugdunensis, S. haemolyticus, and S. hominis (7–13). Their pathogenic features can become so hazardous that new, effective antibiotics and efficient, sensitive, and fast diagnostic methods constitute cornerstones in the fight against these adverse bacteria (12–15).

Introduction of novel drugs has always been followed by the prompt appearance of new staphylococcal resistances. Methicillin was introduced in 1959 to overcome the problems that arose from the increasing prevalence of penicillin-resistant S. aureus isolates (16). Two years later, MRSA strains were detected. Few antibiotics are still active against MRSA, with mupirocin being one of them. Mupirocin is normally used as a topical agent to prevent MRSA invasion (17, 18). Moreover, it is also a recommended antibiotic for use when invasive surgeries are performed (17). Unfortunately, 2 years after its introduction, high-level mupirocin resistance appeared and has worryingly increased since that time. Such resistance is commonly mediated by a conjugative plasmid-associated locus (ileS2) (19). Genetic transfer of ileS2 plasmids has given rise to mupirocin-resistant Staphylococcus clones belonging to several Staphylococcus species (20). The growing incidence of staphylococcus-resistant strains has created a need for the availability of Staphylococcus identification methods able to detect antibiotic resistance of multiple strains simultaneously, such as the new multiple-PCR (mPCR) protocol described in this study.

Bacterial isolates, identification, and susceptibility testing. A total of 67 clinical isolates were included in this study for the validation of the assay. Initially, 16 isolates were used to test all PCR primer pairs. All of these isolates were recovered from clinical samples from 67 patients at the Microbiology Service of the Hospital Universitario Nuestra Señora de Candelaria (HUNSC). Three S. aureus reference strains (ATCC 29213, ATCC 25923, and NCTC8325) were included in the study as well. Before the molecular analysis, all isolates were biochemically identified at the HUNSC Microbiology Service as follows. Clinical isolates were recovered by culturing clinical samples on Columbia agar plates with 5% sheep blood and onto mannitol-salt agar (MSA) plates (bioMérieux, Marcy l’Etoile, France). Plates were incubated at 35 to 37°C for 24 to 48 h under aerobic conditions. Phenotypic identification of the isolates was done based on colony morphology, growth features on MSA, Gram staining, and catalase, coagulase, and DNase tests. Susceptibility testing was performed at the HUNSC Microbiology Service according to CLSI criteria (21, 22). S. aureus isolates were analyzed with the Vitrek 2 system (GPS-511 card) (bioMérieux, Marcy l’Etoile, France). In addition, the susceptibility of the isolates to oxacillin and mupirocin was retested at the HUNSC Research Unit before molecular analysis was performed. Methicillin resistance was confirmed by disk diffusion testing with 1 μg oxacillin, using Mueller-Hinton agar (Difco Laboratories, MI). Intermediate methicillin resistance was confirmed with oxacillin Etest strips (AB Biodisk). Mupirocin re-
sistance was screened by the disk diffusion method (Oxoid, Bas-
ingstoke, England): 5-μg mupirocin disks were used to detect low-
level resistance, and 200-μg disks were used to detect high-level
resistance. Finally, confirmation of high-level resistance was per-
formed with Etest strips (AB Biodisk, bioMérieux, Marcy l’Etoile,
France), which yielded the exact MIC for each highly mupirocin-
resistant isolate (MIC, ≥1,024 μg/ml).

Molecular biology analyses. The first step in the design of the
mPCR was the selection of a variety of specific genes to identify at
the species level clinical isolates from the six different staphylococ-
cial species mentioned above and to detect high-level resistance to
methicillin and/or mupirocin. The partially amplified loci are
shown in Table 1. The primers selected for these amplifications
had been previously described and were obtained from a commer-
cial source (Integrated DNA Technologies, CA). For development
of the mPCR, a DNA suspension from each isolate was rapidly
prepared as previously described (19). Each primer pair was indi-
vidually tested in a single PCR to ensure that the expected band
was amplified (Fig. 1). Each of these single reactions was per-
duced twice using DNA suspensions from two different isolates
for each species. Moreover, some of the single PCRs have been
used by us with collections of more than 200 *S. aureus* isolates,
more than 100 *S. lugdunensis* isolates, and more than 50 *S. sapro-
phyticus* isolates (unpublished data). The reproducible success we
achieved using these primers makes us choose them for developing
the mPCR described herein. Furthermore, we expected that dif-
ferent pairs would yield fragments with different sizes (Fig. 1 and
Table 1), which would facilitate their identification after the
mPCR. Thus, each band was purified (Qiagen purification kit;
Qiagen, CA) and the sequence determined in order to confirm the
identities by comparison to NCBI data bank sequences. Sequenc-
ing of the amplicons was performed on an ABI-PRISM 310 genetic
analyzer (Applied Biosystems Japan Co. Ltd., Tokyo, Japan) with
BigDye terminator fluorescence chemistry (Applied Biosystems,
Warrington, United Kingdom). In the case of the *S. hominis* iso-
lates, the low prevalence of *meca*-positive *S. hominis* clinical infec-
tions in our hospital suggested the convenience of molecular iden-
tification by sequencing its 16S rRNA genes. The *S. hominis* isolate
16S rRNA gene sequence had 99.9% identity with the *S. hominis*
ATCC 27844 16S rRNA gene sequence (GenBank accession no.
L37601.1). After band identity confirmation, the mPCR assay was
optimized (Fig. 2), and the working protocol we used is described
as follows. In a 25-μl reaction volume, 2.5 μl of a DNA suspension
was used as the DNA template, and it was added to a 22.5-μl PCR
mixture consisting of 1 X reaction buffer, 0.2 mM each of the four
deoxynucleoside triphosphates (dNTPs), 2.4 mM MgCl2, 1 μM
nucA primer pair, 0.5 μM *mvaA* primer pair, 0.5 μM *sep* primer
pair, 0.5 μM *fbl* primer pair, 0.5 μM *ileS2* primer pair, 0.5 μM *hom* primer pair, and 0.1 U/μl of *Taq* DNA polymerase (Biotherm DNA poly-
merase; Gene Craft, Germany). All mPCR assays were carried out with
a negative control containing all reagents except the DNA tem-
plate. DNA amplification was carried out in a GeneAmp PCR system
9700 thermocycler (PE Applied Biosystems, CA) with thermal cycling conditions consisting of an initial denaturation
step at 94°C for 5 min, followed by 45 amplification cycles of (i) 10
cycles of denaturation at 94°C for 30 s, annealing at 64°C for 45
s, and extension at 72°C for 45 s; (ii) 10 cycles of denaturation at
94°C for 30 s, annealing at 55°C for 45 s, and extension at 72°C for
1 min; and (iii) 25 cycles of denaturation at 94°C for 45 s, an-
nealing at 52°C for 45 s, and extension at 72°C for 60 s, ending with
a final extension step at 72°C for 10 min. After the mPCR, 4 μl
from the reaction tube was subjected to agarose gel electrophore-
sis (2% agarose, 1 X Tris-borate-EDTA, 8.5 V/cm, 75 min), using
a 100-bp molecular size standard ladder (Roche, Basel, Switzer-
land) to estimate the sizes of the amplification products. The gel

<table>
<thead>
<tr>
<th>TABLE 1 Primers used in this study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target identification (locus)</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>S. lugdunensis (fbl)</td>
</tr>
<tr>
<td>S. lugdunensis (fbl)</td>
</tr>
<tr>
<td>Mupirocin resistance (ileS2)</td>
</tr>
<tr>
<td>Mupirocin resistance (ileS2)</td>
</tr>
<tr>
<td>S. saprophyticus (sap)</td>
</tr>
<tr>
<td>S. saprophyticus (sap)</td>
</tr>
<tr>
<td>S. aureus (nuc)</td>
</tr>
<tr>
<td>S. aureus (nuc)</td>
</tr>
<tr>
<td>Methicillin resistance (mecA)</td>
</tr>
<tr>
<td>Methicillin resistance (mecA)</td>
</tr>
<tr>
<td>S. haemolyticus (mvaA)</td>
</tr>
<tr>
<td>S. haemolyticus (mvaA)</td>
</tr>
<tr>
<td>S. epidermidis (sep)</td>
</tr>
<tr>
<td>S. epidermidis (sep)</td>
</tr>
<tr>
<td>S. hominis (hom)</td>
</tr>
<tr>
<td>S. hominis (hom)</td>
</tr>
</tbody>
</table>

^a Optimal annealing temperature.
was stained with ethidium bromide, and the amplicons were visualized using a UV light in a GelDoc System (Bio-Rad, CA).

Method comparison studies. The concordance, efficiency, reproducibility, sensitivity, typeability, and discrimination power of the mPCR were estimated by use of bivariate ratios and the Simpson diversity index. Moreover, combined comparative analyses of gel images and phenotypic data were performed by using the Infoquest fingerprinting system, version 4.5 (Bio-Rad, CA).

Results. After the mPCR was performed for all 67 isolates, the nucA fragment amplified only in S. aureus strains and never in other staphylococcal isolates. Similarly, fbl, mvaA, sap, sep, and hom fragments yielded fragments only in S. lugdunensis, S. haemolyticus, S. saprophyticus, S. epidermidis, and S. hominis strains, respectively. As for the mecA fragment, it was detected in all strains that exhibited high methicillin resistance but not in the methicillin-sensitive ones. Similarly, amplification of the ileS2 target always occurred for highly mupirocin-resistant strains, never for isolates with low or intermediate resistance, and never for the susceptible ones. The mPCR results for the isolates tested in this study are shown in Table 2.

After the 67 Staphylococcus isolates were analyzed with phenotypic, biochemical, and microbiological tools, single PCRs, and the newly described mPCR, the concordance of identification by classical methods with mPCR identification had a value of 1

![FIG 1 Agarose gel electrophoresis patterns showing single-PCR amplification products for S. lugdunensis gene fbl (lane 1), mupirocin resistance gene ileS2 (lane 2), S. saprophyticus gene sap (lane 3), S. aureus gene nucA (lane 4), methicillin resistance gene mecA (lane 5), S. haemolyticus gene mvaA (lane 6), S. epidermidis gene sep (lane 7), and S. hominis gene hom (lane 8). Each pair of primers was amplified together with a negative control without DNA.](http://jcm.asm.org/)

![FIG 2 Agarose gel electrophoresis patterns showing mPCR amplification products from different staphylococcal isolates. Lanes: C-, negative control without DNA; 1, methicillin-resistant S. hominis isolate (hom and mecA bands); 2, methicillin-resistant S. epidermidis isolate (sep and mecA bands); 3, mupirocin-resistant S. epidermidis isolate (sep and ileS2 bands); 4, methicillin- and mupirocin-resistant S. haemolyticus isolate (mvaA, mecA, and ileS2 bands); 5, methicillin-resistant S. aureus isolate (nucA and mecA bands); 6, methicillin- and mupirocin-susceptible S. saprophyticus isolate (sap band); 7, methicillin- and mupirocin-susceptible S. lugdunensis (fbl band).](http://jcm.asm.org/)

<table>
<thead>
<tr>
<th>Species</th>
<th>No. of isolates</th>
<th>Mup (r)</th>
<th>Met (s)</th>
<th>Mucp Met (r)</th>
<th>Mucp Met (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>31</td>
<td>2</td>
<td>19</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>S. epidermidis</td>
<td>14</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>S. hominis</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. saprophyticus</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>S. haemolyticus</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>S. lugdunensis</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Total 67 6 24 7 30

*Mucp, mupirocin; Met, methicillin; r, resistant; s, susceptible.
Other species, such as Staphylococcus capitis, have been rarely associated with endophthalmitis after surgery and neonatal sepsis, respectively, in some studies (17), but they have not caused complications in our hospital. Another possible limitation of the present study is the small number of methicillin- and/or mupirocin-resistant isolates we tested. But, as we have mentioned above, the larger number of isolates analyzed by single PCR reinforces the dependability of this multiplex PCR. In comparison with good previously described methods, such as the quadruplex PCR described by Zhang et al. (13), this new protocol has the advantage of obtaining species-specific amplicons, which permits species identification without the need for sequencing PCR fragments after the PCR. This protocol, from the preparation of cellular suspension to electrophoresis analysis of the PCR products on agarose gel, was performed in 5 to 6 h. The knowledge provided by the results obtained should dictate the appropriate antibiotic therapy in concert with preemptive measurements.

ACKNOWLEDGMENTS

This work was partially supported by grants from the Instituto de Salud Carlos III (Spanish Health Ministry), namely, Grant PI10/00280 to F.M. We also acknowledge cofunding by the European Region Development Funds (ERDF).

REFERENCES