Abortion in Mice Associated with Pasteurella pneumotropica

G. E. Ward,† Ruth Moffatt,¹ and Ernest Olfert²

Departments of Veterinary Microbiology, Pathology,¹ and Physiology,² Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 0W0 Canada.

Received for publication 29 May 1978

Pasteurella pneumotropica was isolated from the uteri, fetuses, lungs, and spleens of aborting Swiss Carworth mice. Male mice in the colony carried P. pneumotropica in pharynges, testes, and seminal vesicles. Normal pregnant and nongravid females carried P. pneumotropica in the eye of 1 and in the uterus of 4 of 11. Pregnant mice from another colony did not abort when injected with P. pneumotropica. Necrotizing and suppurative metritis was found among aborting females with P. pneumotropica infections. Occurrence of malignant lymphoma and mammary adenocarcinoma among animals in this colony likely resulted in immunosuppression which could have predisposed animals to the diseases seen.

Pasteurella pneumotropica can be found in the nasopharynges, brains, and uteri of normal mice (1, 2, 4-8). The organism was characterized in 1956 by Jawetz (7). By rapid serial passage of the organism, he was able to produce pneumatic lesions in mice. P. pneumotropica has been isolated from mice having pneumonia, conjunctivitis, metritis, cystitis, pleural abscesses, peritoneal abscesses, dermatitis, and orbital abscesses (for a review, see reference 10). Other animals and humans have also been infected by the organism (3, 10).

The occurrence of P. pneumotropica in the uteri of normal mice has been reported at the rate of 4 to 33% in various studies (2, 4). Obviously, the organism is present in many mice without causing disease. This report deals with an epizootic of abortion in a single colony of mice from which P. pneumotropica was isolated from most uteri and fetuses of aborting females examined. The organism was also found in the seminal vesicles of the active breeding males in this colony.

CASE REPORT

On 16 August, 1976, an aborting Swiss Carworth mouse used in nutrition research (Department of Animal Science, University of Saskatchewan) was submitted for necropsy. From this date until 21 October, 1976, 10 mice from this colony in various stages of abortion were submitted.

The abortion storm involving P. pneumotropica occurred only among the Swiss Carworth mice, although other breeds were housed in the same room. P. pneumotropica was isolated from 7 of 10 aborting mice submitted (Table 1). The organism was isolated from the uteri, fetuses, lungs, and spleens of various animals. The epizootic was terminated by the destruction of the colony.

MATERIALS AND METHODS

Routine necropsies were performed on all mice submitted. At the time of necropsy, specimens of uteri, spleens, lungs, hearts, seminal vesicles, fetuses, and swabs of nasopharynges and/or eyes were taken from selected animals for bacteriological examination. These specimens were cultured as follows: blood agar at 37°C in air, MacConkey agar at 37°C in air, blood agar with staphylococcus streak at 37°C in 5% CO₂.

Specimens of the major organs described above, as well as any organ appearing grossly abnormal, were placed in 10% buffered Formalin for histological examination. These portions were processed routinely, sectioned at 6 μm, and stained with hematoxylin-eosin for light microscopic evaluation.

RESULTS

Microscopic examination of material from uteri and fetuses of aborting mice showed gram-negative bacilli, 0.8 by 1.2 μm to 0.8 by 5 μm. P. pneumotropica was cultured in the uteri of 7 of 10 aborting mice (Table 1). In 4 of the 10 aborting mice, P. pneumotropica was found in either spleens or lungs, indicating septicemia. A variety of other organisms (Escherichia coli, alpha-hemolytic streptococci, Proteus sp.) were found in the organs of some mice.

P. pneumotropica grew initially only in CO₂, but adapted to growth in air rapidly. Urease was produced rapidly and abundantly. Nine P. pneumotropica strains were examined in detail for biochemical characteristics. One drop of horse serum was added to all media to encourage growth. The following characteristics were uniform for all strains. Organisms were fermentative, catalase, and oxidase positive and reduced nitrate. H₂S was produced on lead acetate paper but not in triple sugar iron agar, urease was produced, and acid was produced from glucose.
Necrotizing ulcerative metritis; four resorbing feti

Pathological lesions	Organ cultured	Bacteria isolated
Uterus | P. pneumotropica | E. coli
Spleen | No growth | P. pneumotropica
Lung | P. pneumotropica | E. coli (hemolytic)
Streptococci (alpha-hemolytic) | P. pneumotropica

Suppurative metritis

Pathological lesions	Organ cultured	Bacteria isolated
Uterus | P. pneumotropica | Streptococci (anaerobic)
Lung | P. pneumotropica | E. coli
Spleen | P. pneumotropica | Streptococci (alpha-hemolytic)

Necrotizing suppurative metritis;
 five normal fetuses (right horn),
 two resorbing feti (left horn)

Pathological lesions	Organ cultured	Bacteria isolated
Uterus | P. pneumotropica | P. mirabilis
Spleen | P. pneumotropica | P. pneumotropica
Fetus (normal) | P. pneumotropica | E. coli
Fetus (resorbed) | P. pneumotropica | P. mirabilis

Suppurative metritis; rupture of right horn; neoplastic lymphocytes present

Pathological lesions	Organ cultured	Bacteria isolated
Uterus | P. pneumotropica | E. coli | P. vulgaris
Spleen, heart, testes, seminal vesicle | No growth | Proteus sp.
Spleen | Proteus sp. | E. coli
Lymph node | P. pneumotropica | Proteus sp.

Ulcerative metritis

Pathological lesions	Organ cultured	Bacteria isolated
Fetus, uterus, spleen | No growth | E. coli

Necrotizing suppurative metritis

Pathological lesions	Organ cultured	Bacteria isolated
Fetus, spleen, uterus | No growth | E. coli

No lesions

Pathological lesions	Organ cultured	Bacteria isolated
Uterus | P. pneumotropica | E. coli

Two resorbing feti; osteosarcoma of lumbar vertebra

Pathological lesions	Organ cultured	Bacteria isolated
Uterus, spleen | P. pneumotropica | E. coli

Necrotizing suppurative metritis

Pathological lesions	Organ cultured	Bacteria isolated
Uterus | P. pneumotropica | E. coli

sucrose, maltose, trehalose, raffinose, levulose, and mannose. Organisms were phenylalanine deaminase negative, did not grow on citrate or malonate, were nonmotile, and did not hydrolyze gelatin or produce acid from sorbitol or dulitol. Variable reactions were found for indole production, esculin hydrolysis, and acid production in arabinose, xylose, galactose, lactose, inulin, mannotol, inositol, salicin, and rhamnose. All media were examined for 4 days before being called negative.

Of the 10 aborting female mice examined, 7 exhibited gross and/or microscopic evidence of a necrotizing suppurative metritis (Table 1). This was characterized by necrosis and loss of uterine epithelia, with large numbers of polymorphonuclear leukocytes invading all layers of the uteri and accumulating in the lumina. In one case, rupture of the right uterine horn had resulted in peritonitis. Fetal resorption was present in 3 of the 10 animals. An incidental finding
<table>
<thead>
<tr>
<th>Pathological lesions</th>
<th>Organ cultured</th>
<th>Bacteria isolated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uterus</td>
<td>Streptomyces sp.</td>
</tr>
<tr>
<td>Suppurative metritis</td>
<td>Lung</td>
<td>No growth</td>
</tr>
<tr>
<td></td>
<td>Fetus</td>
<td>No growth</td>
</tr>
<tr>
<td>Nongravid; no lesions</td>
<td>Uterus</td>
<td>P. pneumotropica</td>
</tr>
<tr>
<td>Gravid; six normal feti</td>
<td>Uterus</td>
<td>P. pneumotropica</td>
</tr>
<tr>
<td>Nongravid; bilateral conjunctivitis</td>
<td>Uterus</td>
<td>P. pneumotropica</td>
</tr>
<tr>
<td></td>
<td>Eye</td>
<td>E. coli</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. mirabilis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K. pneumoniae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alcaligenes sp.</td>
</tr>
<tr>
<td>Wild mouse, lymphosarcoma</td>
<td>Spleen</td>
<td>No growth</td>
</tr>
<tr>
<td></td>
<td>Lymph node</td>
<td>Proteus sp.</td>
</tr>
<tr>
<td>Mammary adenocarcinoma, right prescapular area; nongravid</td>
<td>Uterus</td>
<td>No growth</td>
</tr>
<tr>
<td>Rearing 3rd litter; lymphosarcoma</td>
<td>Eye, nasopharynx</td>
<td>No growth</td>
</tr>
<tr>
<td>Two litters, nongravid; mammary adenocarcinoma; right axilla lymphosarcoma</td>
<td>Nasopharynx</td>
<td>No growth</td>
</tr>
<tr>
<td>Nongravid mammary adenocarcinoma, right inguinal area</td>
<td>Nasopharynx</td>
<td>No growth</td>
</tr>
<tr>
<td>Virgin; conjunctivitis</td>
<td>Nasopharynx</td>
<td>No growth</td>
</tr>
<tr>
<td>Virgin; conjunctivitis; lymphosarcoma</td>
<td>Nasopharynx</td>
<td>No growth</td>
</tr>
<tr>
<td>Nongravid mammary cystadenocarcinoma metastatic to lung</td>
<td>Eye</td>
<td>P. pneumotropica</td>
</tr>
<tr>
<td></td>
<td>Nasopharynx</td>
<td>No growth</td>
</tr>
<tr>
<td>Nongravid mammary adenocarcinoma, right shoulder and thorax</td>
<td>Eye, nasopharynx</td>
<td>No growth</td>
</tr>
<tr>
<td>Nongravid corneal edema; lenticular degeneration</td>
<td>Eye, nasopharynx</td>
<td>No growth</td>
</tr>
<tr>
<td>Nongravid; no lesions</td>
<td>Eye, nasopharynx</td>
<td>No growth</td>
</tr>
<tr>
<td>Nongravid; uterine hyperemia</td>
<td>Uterus</td>
<td>No growth</td>
</tr>
<tr>
<td>Nongravid; uterine hyperemia</td>
<td>Uterus</td>
<td>No growth</td>
</tr>
<tr>
<td>Littered earlier; necrotizing metritis; fetal resorption; lymphosarcoma</td>
<td>Uterus</td>
<td>P. pneumotropica</td>
</tr>
<tr>
<td></td>
<td>Eye</td>
<td>Streptococci (alpha-hemolytic)</td>
</tr>
<tr>
<td></td>
<td>Nasopharynx</td>
<td>S. epidermidis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. epidermidis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Streptococci (alpha-hemolytic)</td>
</tr>
<tr>
<td>Nongravid; lymphoma</td>
<td>Uterus, spleen</td>
<td>No growth</td>
</tr>
<tr>
<td>Failed to conceive, bred twice; mild endometritis</td>
<td>Uterus</td>
<td>No growth</td>
</tr>
</tbody>
</table>
in one animal was an osteosarcoma originating in the lumbar area and producing posterior paralysis. In two cases no gross or microscopic abnormalities were detectable.

Male mice from the colony were examined for the presence of *P. pneumotropica* (Table 2). The organisms were found in the pharynx of one, testes of one, and seminal vesicles of two. These mice had been breeding males used on the aborting females. Specific pathological lesions were not detected in any of the nine male mice examined in detail. One animal was emaciated; however, the cause of the emaciation could not be determined.

Females (pregnant and nongravid) were examined for the presence of *P. pneumotropica* in various organs (Table 3). *P. pneumotropica* was found in the uteri of 4 of 11 examined (36%) and in the eye of 1 animal. Other organisms (*Streptomyces* sp. *Escherichia coli*, *Proteus mirabilis*, *Klebsiella pneumoniae*, *Alcaligenes* sp., alpha-hemolytic streptococci, *Staphylococcus epidermidis*) were occasionally found in the uteri and eyes of some animals without evidence of disease. A wide variety of lesions were found in the nonaborting female mice examined. Necrotizing suppurative metritis was detected in only 2 of the 20 animals, whereas mild endometritis was present in a third mouse. Three animals exhibited varying degrees of conjunctivitis. Six cases of lymphosarcoma were identified, as were five cases of mammary adenocarcinoma. One of the cases of lymphosarcoma was found in a wild mouse caught in the area. Four animals in this group were nongravid with no striking abnormalities detectable either grossly or microscopically. One animal was pregnant with six normal fetuses in the uterus.

Ten pregnant mice from another colony were given 0.5 ml of an overnight broth culture of *P. pneumotropica* intraperitoneally. None of these mice aborted. All delivered and raised normal litters. An additional 10 mice were challenged with an overnight broth culture of *P. pneumotropica* by intravaginal instillation. No abortion resulted.

Another animal from this colony developed conjunctivitis. *P. pneumotropica* was recovered from the eye of this animal. Three wild mice trapped in the vicinity of the animal colony did not harbor *P. pneumotropica* in any of the organs cultured. One other mouse from another colony at the University of Saskatchewan housed in another building yielded *P. pneumotropica* from a retro-orbital abscess.

DISCUSSION

The identification of *P. pneumotropica* in 7 of 10 aborting mice in association with fetal resorption and a necrotizing suppurative metritis suggests that the organism can be pathogenic under certain conditions. Because *P. pneumotropica* was found in normal nongravid and pregnant mice, it appears that some additional stress factor is required for the production of disease. Several cases of malignant lymphoma and mammary adenocarcinoma were found in animals from this colony. Both of these conditions are due to viral infections. Many viral infections are known to cause immunosuppression due to replication in the reticuloendothelial and lymphoid systems. Subclinical infection, particularly with mouse leukemia viruses, in this case could have predisposed the animals to infection with an organism ordinarily of low pathogenicity.

Blackmore and Casillo (1) suggest that nasopharyngeal infection allows transmission of *P. pneumotropica* to the vagina, resulting in an ascending infection. Occurrence of this organism in aborting mice and male genitalia has not been previously reported. Another possible mode of transmission could be from male to female at the time of breeding.

Lack of ability of *P. pneumotropica* to produce indole has been reported in 14 of 28 strains examined (6). We confirmed this observation in five of nine strains examined. Our strains produced acid from trehalose and H$_2$S. This differentiates them from *P. ureae* (11).

LITERATURE CITED