Enzyme-Linked Immunospecific Antibody Test for Detecting Antibody to Klebsiella

J. PETER RISSING,* THOMAS B. BUXTON, WILLIAM L. MOORE III, T. OZAWA,† AND WILLIAM L. MOORE, Jr.

Infectious Disease Section, Veterans Administration Hospital, and the Medical College of Georgia, Augusta, Georgia 30904

Received for publication 28 August 1978

The enzyme-linked immunospecific antibody test was performed in standard test tubes and microtiter plates to measure high-titer antibody against Klebsiella capsular polysaccharide. Initial studies were conducted with rabbit sera; other studies were conducted with the serum of a patient infected with type 9 Klebsiella. Both immunized rabbits and an infected patient disclosed high titers of antcapsular antibody. Control sera from other immunized rabbits and other infected humans failed to show this substantial antibody titer against type 9 Klebsiella. Comparisons between counterimmunoelectrophoresis and indirect immunofluorescence disclosed that the sensitivity of the enzyme-linked immunospecific antibody test for anti-Klebsiella antibody ranged between 400 and 10,000 times that of these tests.

The enzyme-linked immunospecific antibody (ELISA) test was first described by Engvall and Perlman, in 1971, to measure immunoglobulin G (IgG) (7). The test has been used to detect antibody in parasitic diseases: malaria, toxoplasmosis, and Chagas' disease (12-14); and also in viral diseases: measles, cytomegalovirus, and rubella (11). Work directed at the detection of antibodies against bacteria with the ELISA technique has dealt primarily with Salmonella (2, 3). However, detection of antibody in sera of patients with bacterial disease by precipitin techniques has been successful in detecting staphylococcal endocarditis (6). Antibodies against Pseudomonas and Klebsiella have been found in sera of patients infected with these species (4, 5).

Because of these results, we elected to explore the feasibility of the ELISA test to detect antibodies to Klebsiella. We were particularly concerned with developing methods that allowed testing in microtiter plates with simplified methodology. Initial studies were conducted with rabbit sera. Additional studies were done on sera from infected humans.

(This work was presented in part at the 17th Interscience Conference of Antimicrobial Agents and Chemotherapy, New York, N.Y., 14 October 1977.)

MATERIALS AND METHODS

Bacterial typing. Klebsiella organisms were typed by using conventional quellung reactions and Difco antisera.

Antigen. Klebsiella capsular polysaccharide (KCP) (type 9) was extracted from cells cultured from a patient with Klebsiella pneumoniae pneumonia by a modification of the method of Campbell and Pappenheimer (1). Klebsiella organisms were mass cultured in Trypticase soy broth (TSB), harvested by centrifugation, washed twice in phosphate-buffered saline (PBS), lysed in 1% phenol-water, autoclaved, and centrifuged, and the supernatant was extracted with 95% ethanol, containing 50 g of sodium acetate per liter. Precipitated polysaccharide was redissolved in 5% sodium acetate, shaken with a 1/5-volume of chloroform-butanol (5:1), and dried in vacuo.

Antiserum. Rabbit antisera to Klebsiella (Difco Laboratories, Detroit, Mich., pool three and type 9) were used. Goat anti-rabbit IgG (heavy-chain specific, lot 9195; 2.4 mg of antibody protein per ml, Cappel) and anti-human IgG (gamma-chain specific, lot 9666; 1.5 mg of antibody protein per ml, Cappel) were conjugated with alkaline phosphatase (AP).

Conjugations. The method of Engvall and Perlman was used (8). A 0.3-ml portion (1.5 mg of protein) of AP (Sigma type 7) was centrifuged for 10 min at 4,600 X g. The supernatant was discarded, and 0.2 ml of antiglobulin (0.5 mg of protein) was added and dialyzed against PBS overnight. Reagent-grade glutaraldehyde was diluted to 0.2% with water, and 80 ml was added and incubated at room temperature for 2 h. The reactant mixture was diluted to 2 ml with PBS (pH 7.2) and dialyzed against two 5-liter exchanges of PBS overnight. Conjugate was diluted to 10 ml in 0.05 M tris(hydroxymethyl)aminomethane-hydrochloride (pH 8.0) with 0.001 M MgCl2 and stored until needed at 4°C. Working dilutions of antiglobulin conjugate were from this 10 ml at 1:125 to 1:500 into PBS-Tween 20 (Tween 0.05%).
Substrate. p-Nitrophenol phosphate (NPP; 40 mg/tablet) (Sigma Chemical Co., St. Louis, Mo.) was thawed and diluted to a concentration of 1 mg/ml in 0.05 M Na2CO3 (pH 9.8) with 0.001 M MgCl2.

Other serological testing. Indirect immunofluorescence (IFA) was modified slightly from the method of Goldman (9). Whole, washed cells (50 to 100 per oil immersion field) were air dried and fixed with 0.3% formalin and 2.5% glutaraldehyde in PBS. Anti-human or anti-rabbit fluorescein-conjugated IgG was incubated for 45 min, and slides were washed three times for 5 min with PBS. Slides were then reacted with Difco fluorescin conjugate. A control serum was added; and reading was at 4 S.A. Fluorescamin on an AO Fluorescamin instrument.

In the ELISA test for antibody to Klebsiella pneumoniae, KCP preparations were used. The ELISA test was used to determine the titer of specific antibody in rabbit antisera. Results are shown in Fig. 1 that show optical density with antisera against type 9 Klebsiella pneumoniae. Pool three antisera (against types 8, 9, and 10) was one order of magnitude less active (not shown). Optical density correlated well with

![Graph showing optical density vs. antibody titer](http://jcm.asm.org/ Downloaded from http://jcm.asm.org/ on October 2, 2017 by guest)
simple visual assessment. Control heterologous rabbit antisera (anti-pneumococcal omnisera) appear on the same graph. Other tested, pooled anti-pneumonococcal antisera were similar. Results were achieved consistently with both tubes and microtiter plates. When the reaction was repeated several months later with the same reagents, essentially identical figures were reproduced.

Human study results are presented in Fig. 2. Solid squares represent dilutions of serum from a patient with bacteremic pneumonia caused by K. pneumoniae type 9. Results presented are mean optical density of four such tests; vertical bars disclose the standard error of the mean. Control sera from 9 normal persons and 10 bacteremic patients are presented in closed circles and open squares, respectively; results presented are mean optical density for each group; vertical bars indicate the standard error of the mean. All tests were run in duplicate. Sera from three patients with Klebsiella infections, not type 9, were also analyzed with type 9 KCP but are not presented graphically. One serum (patient infected with type 8) had a titer of 1:512; the other two (patients infected with unknown types from pools 7 and 10) had titers of 1:64 and 1:128, respectively. The above Klebsiella type 9 rabbit antiserum and human serum were also studied by IFA staining and by conventional CIE methods. Rabbit anti-Klebsiella type 9 antiserum had a maximum titer of 1:64 by IFA and 1:32 by CIE; the tested human serum had titers of 1:64 by both techniques. The ELISA test detected antibody from 400 to 10,000 times these dilutions. As described and implemented in our laboratory, the ELISA, CIE, and IFA tests all require from 2 to 3 h; thus, the increased sensitivity of the ELISA method is not related to longer incubation.

DISCUSSION

Though our initial studies were performed with polystyrene tubes, results were equally satisfactory with microtiter plates, and subsequent experiments were conducted with these. The small volume of the microtiter plates necessitated a very short light path (2 mm maximum) on our modified spectrophotometer; a conventional 10-mm light path would be more desirable.

The ELISA test was proven able to discern high-titer antibodies against Klebsiella type 9. Minimal dilutions of normal human sera were remarkably free of this antibody. Similarly diluted sera from patients with other active bacterial infections were also free of this type-specific antibody.

Two of the sera from three patients with Klebsiella infections, not type 9, had increased antibody for the type 9 antigen. This antibody activity probably represents cross-reactivity to the
type 9-specific antigen. Increasing the number of antigens to include strains commonly encountered in clinical practice may allow detection of Klebsiella infection in patients. This might be immensely helpful in sorting out those patients who are colonized from those who are infected with this frequent nosocomial pathogen.

The advantages for the method presented are obvious and include: (i) reagents are long-lived, maintaining enzymatic activity; (ii) expensive monitoring equipment used in other antibody tests is not required; (iii) materials are inexpensive and easily disposable; (iv) substantial dilutions of serum are allowed by the sensitivity of the test; and (v) the probability of automation is high.

We believe that the ELISA test lends itself to the relatively rapid screening of sera for the presence of specific antibodies and that the test is semiquantitative. We feel that additional studies are warranted and that antibody-mediated detection of bacterial diseases in humans using the ELISA technique is probable.

ACKNOWLEDGMENT

This work is VA project 509-7472-01.

LITERATURE CITED

