Veillonella parvula discitis and secondary bacteraemia: a rare infection complicating endoscopy and colonoscopy?

D. Marriott¹, D. Stark¹, J. Harkness¹

St. Vincent’s Hospital, Department of Microbiology, Sydney, Australia.¹

*Corresponding author mailing address:

Department of Microbiology
St. Vincent’s Hospital
Darlinghurst
Sydney
NSW 2010
Australia

Phone: 61 2 8382 9195.
Fax: 61 2 8382 2989.
E-mail: dmarriott@stvincents.com.au
Abstract

We report a case of *Veillonella parvula* lumbar discitis and secondary bacteraemia confirmed by molecular characterisation of the 16S rRNA genes. Identification of the organism was essential for appropriate choice of antimicrobial therapy following the failure of empiric flucloxacillin. *Veillonella* spp. are normal flora of the gastrointestinal tract, raising the possibility that an endoscopy and colonoscopy at which small intestinal and rectal biopsies were obtained performed 8 weeks prior to presentation was the portal of entry. This case highlights the importance of obtaining a microbiologic diagnosis, particularly in patients with previous instrumentation.
Case Report

A 55-year old school headmaster presented to the Emergency Department of St. Vincent’s Hospital, Sydney with a 48 hour history of the sudden onset of severe lower back pain. There was no history of injury or trauma. The pain was associated with night sweats and he described an episode of shaking consistent with rigors. There was no significant past medical history and no recent dental procedure was reported. He had undergone a routine endoscopy and colonoscopy for a slight change in bowel habits two months prior to presentation. There were no abnormal findings but a small bowel and rectal biopsy were obtained to exclude coeliac disease and histologic colitis.

On examination, the patient was initially afebrile although his temperature rose to 38°C that night. No heart murmurs were present and there were no peripheral stigmata of infective endocarditis. Dentition was normal and no gingivitis was noted. Severe back pain was precipitated by minimal movement of the legs and trunk.

On examination, moderate tenderness was noted over the lumbar spine and left lumbar paravertebral region. The neurological examination was limited by pain but was considered to be normal. The neutrophil count was 4.6 x 10⁹/L but the ESR was 68mm/hr and the C-reactive protein 211mg/L. An x-ray of the lumbar spine revealed degenerative changes at L3, L4 and L5. During the next 12 hours the pain worsened, requiring narcotic analgaesia and urinary retention developed, requiring bladder catheterization and an indwelling catheter. Two sets of blood cultures were collected and antimicrobial therapy was withheld pending an MRI scan which was performed 18 hours after admission. The MRI scan revealed multilevel disc destruction with posterior disc extrusions most severe at the L2/3 level, resulting in compression of the thecal sac and central canal stenosis at this level. No bony destruction was noted.

Blood cultures remained negative 48 hours after admission. A CT guided biopsy of the L2-3 disc was undertaken, with 3 fine needle aspirate biopsies obtained using a 22G needle. Following the biopsy the patient was commenced on flucloxacilllin and given a single dose of ceftriaxone 1g. Within 24 hours, fever and pain began to improve and the
indwelling urinary catheter was removed. However, during the next 72 hours, fever and pain again worsened and reduced oxygen saturation in conjunction with bibasal pulmonary collapse/consolidation developed. Six days after admission, a gram negative anaerobic coccus was isolated from the L2/3 disc aspirate.

Antimicrobial therapy was changed to cefotaxime which resulted in rapid defervescence. A dental examination performed at this time was unremarkable. He was discharged on day 10 to continue ceftriaxone 2g/day as an outpatient. On day 20 he was progressing well and the CRP had fallen to 80. By day 42 the CRP had fallen to 8.8 and intravenous antibiotics were ceased. Augmentin due forte was administered to complete a total of 3 months of antimicrobial therapy. He was clinically cured on follow-up 6 weeks later and the CRP was 2.3.

Microbiology

Three fine needle aspirate specimens from the L2/3 disc space were forwarded to the Microbiology Department for routine microbiological analysis. The Gram stain of the disc aspirate revealed polymorphonuclear leukocytes but no organisms were seen. Horse Blood Agar (HBA) (Oxoid, Australia) and Chocolate Agar (CHA) (Oxoid, Australia) were inoculated and incubated for 7 days at 35°C under 5% CO₂ atmospheric conditions. A Brain Heart Infusion Agar plate (Oxoid, Australia) was incubated at 35°C anaerobically for 7 days. On day 3 a heavy pure growth of a tiny Gram-negative coccus was observed on the anaerobic culture plate. No growth occurred on the aerobic plates and no other pathogens were isolated despite prolonged incubation.

Blood cultures were processed using the BacTAlert system (Biomerieux, Marcy, France). On day 4, the anaerobic blood culture yielded a slow growing Gram-negative, non-motile coccus. The blood culture was sub-cultured onto Brain Heart Infusion Agar and incubated under anaerobic conditions. Small colonies identical to those from the disc aspirate grew after 48 hours and were presumptively identified as *Veillonella* species by anaerobic growth requirements. Further identification and susceptibility testing were unable to be performed as the sub-cultured isolates failed to grow and the
significant time delay before attempting to re-isolate organisms from the blood culture bottle rendered them non-viable.

Genomic DNA was extracted from both of the clinical isolates using a QIAamp® DNA Mini Kit (QIAGEN, Hilden, Germany) and DNA amplification of the 16S rRNA gene complex was followed by sequencing as previously described (1). The PCR products were purified using the QIAquick PCR Purification Kit (Qiagen, Hilden, Germany) as per manufacturer’s instructions. The PCR products were sequenced directly in both directions on an ABI Prism 3730 automated sequencer at the SUPAMAC facility (Royal Prince Alfred Hospital, Sydney). The sequences were compared to those available in the GenBank databases using the BLASTN program run on the National Centre for Biotechnology Information server (http://www.ncbi.nlm.nih.gov/BLAST/).

Both of the 16S rRNA gene sequences were identical and demonstrated a 100% homology with the 16S rRNA gene from *V. parvula* (Gen Bank accession no. AF439640).

Discussion

Veillonella are small, non-fermentative, strictly anaerobic, Gram-negative cocci, which form part of the normal flora of the oral, genitourinary, respiratory and intestinal tracts of humans and animals (2). The genus *Veillonella* currently consists of 8 species (3, 4).

Veillonella species are rare causes of serious infections such as meningitis, osteomyelitis, prosthetic joint infection, pleuropulmonary infection, endocarditis and bacteraemia (5-11). In most clinical reports of *Veillonella* infection the isolates have not been speciated. There have only been three previous reports of confirmed *V. parvula* discitis or vertebral osteomyelitis (6,7,12) and one case caused by an unspeciated *Veillonella* (13). All previous reports of discitis or vertebral osteomyelitis caused by *Veillonella* species are summarized in table 1.

Risk factors for *Veillonella* infection include periodontal disease (5), immunodeficiency (8), intravenous drug use (5) and premature birth (9). The patient described in this case report had no apparent risk factors. However, he had undergone colonoscopy and endoscopy, with rectal and small intestinal biopsies, 2 months prior to presentation,
raising the possibility of this procedure as the portal of entry for the organism. There is little recent literature on the incidence of bacteraemia following colonoscopy or endoscopy. Much of the research dates from the 1970's and 1980's where blood culture systems may not have been as effective as those used today. The incidence of bacteraemia in those studies ranged from 0% to 4% and potentially pathogenic organisms were rarely isolated (14,15,16). There have been no reports of *Veillonella* bacteraemia following colonoscopy. However, as the organism is part of the normal gastrointestinal flora the biopsy procedure is a potential port of entry.

The identification of *Veillonella* to the species level remains problematic as conventional phenotypic and biochemical testing does not provide adequate discrimination between species. Direct sequencing of the 16S rDNA has proven a stable and specific marker for bacterial identification (1) and has been described as the best method for identification of *Veillonella* strains at the species level. The sequence data generated at the 16S rRNA gene complex regions from both the aspirate and blood culture isolates showed 100% homology with *V. parvula* (Gen Bank accession no. AF439640).

Susceptibility testing could not be performed as the isolates from both blood and tissue failed to remain viable on subculture. Due to the lack of adequate numbers of reports on *Veillonella* as a pathogen, there is little data in the literature on treatment strategies. Penicillin has traditionally been considered the antimicrobial agent of choice for the treatment of this organism. However in a recent study *Veillonella* species isolated from the oral cavity of humans demonstrated a high level of resistance to penicillin G (MIC >2ug/ml) (17). These penicillin G-resistant isolates had reduced susceptibility to ampicillin or amoxicillin but were susceptible to the combination of amoxicillin and clavulanate. In general, *Veillonella* species are resistant to tetracycline, vancomycin, aminoglycosides and ciprofloxacin, and have intermediate susceptibility to erythromycin. Our patient had an excellent clinical and immunological response to 3rd generation cephalosporin therapy followed by oral amoxicillin/clavulanate.

The most common causative organisms isolated from patients with spontaneous discitis include *S.aureus*, coagulase negative staphylococci and streptococci. These organisms generally account for over 80% of all positive cultures (18,19). Although Gram positive organisms account for the majority of cases and will be appropriately treated by standard anti - staphylococcal therapy, our patient highlights the need for a definitive diagnosis, by
either conventional or molecular methods, so that appropriate antimicrobial therapy can be administered. A recent publication from Lecouvet et al (20) demonstrated the sensitivity of 16S ribosomal DNA universal target and femA staphylococcal specific target genes. Overall, a causative organism was isolated in 14 out of 19 patients, whereas molecular assay identified an organism in 19 out of 19 patients. Only two of the five organisms detected by molecular methods would have responded to antibiotic agents active against Gram positive cocci.

This is the fourth reported case of *Veillonella parvula* causing discitis. However this report is unique in that molecular methods were used in the identification of the isolate and concomitant blood cultures yielded the same organism. This case report highlights the usefulness of molecular methods in identifying fastidious microorganisms which may be non-viable on repeated sub-culture, which in turn ensures appropriate antimicrobial

Figure legends

Table 1. Previous reported cases of discitis or vertebral osteomyelitis caused by *Veillonella* species.

References

<table>
<thead>
<tr>
<th>No.</th>
<th>No. of patients (ref)</th>
<th>Age/Sex</th>
<th>Blood culture</th>
<th>Bone/disc culture</th>
<th>Underlying disease/risk factors</th>
<th>Antibiotic Therapy</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1 (Present report)</td>
<td>55/M</td>
<td>V. parvula</td>
<td>V. parvula</td>
<td>Colonoscopy and endoscopy</td>
<td>Ceftriaxone</td>
<td>Cure</td>
</tr>
<tr>
<td>2.</td>
<td>1 (7)</td>
<td>61/F</td>
<td>V. parvula</td>
<td>V. parvula</td>
<td>Sjogrens syndrome Xerostomia</td>
<td>Ceftriaxone</td>
<td>Cure</td>
</tr>
<tr>
<td>3.</td>
<td>1 (6)</td>
<td>74/M</td>
<td>Not reported</td>
<td>V. parvula</td>
<td>Nil</td>
<td>Penicillin</td>
<td>Cure</td>
</tr>
<tr>
<td>4.</td>
<td>1 (12)</td>
<td>70 M</td>
<td>Not reported</td>
<td>V. parvula</td>
<td>Nil</td>
<td>Unspecified</td>
<td>Cure</td>
</tr>
<tr>
<td>5.</td>
<td>1 (13)</td>
<td>27/M</td>
<td>Not reported</td>
<td>Veillonella spp.</td>
<td>Nil</td>
<td>Amoxicillin</td>
<td>Cure</td>
</tr>
</tbody>
</table>