Title:

GRAPHIUM BASISTRUNCATUM FUNGEMIA IN A PATIENT WITH ACUTE LEUKEMIA

Authors:

Deepali Kumar¹, Lynne Sigler², Connie Fe C. Gibas², Subhash Mohan³, Andre Schuh⁴, Bruno C. Medeiros⁴, Kenneth Peckham⁴, Atul Humar¹

Affiliations:

¹ Division of Infectious Diseases, University of Toronto, Toronto, Ontario, Canada
² University of Alberta Microfungus Collection and Herbarium, Edmonton, Alberta, Canada
³ Department of Microbiology, Mount Sinai Hospital, Toronto, Ontario, Canada
⁴ Division of Hematology, University of Toronto, Toronto, Ontario, Canada

Corresponding Author:

Deepali Kumar MD MSc FRCPC
Division of Infectious Diseases
University Health Network
NCSB 11C-1230
585 University Avenue
Toronto, Ontario, Canada M5G 2N2
T: (416) 340-4800 x6628
F: (416) 340-3511
E: Deepali.kumar@uhn.on.ca
Abstract:

We report the first case of infection caused by *Graphium basitruncatum* in a man with acute leukemia who developed persistent fungemia and skin lesions. *G. basitruncatum*, a member of the Microascaceae, is phylogenetically and morphologically distinct from *G. penicilliodes* and the opportunistic pathogens *Scedosporium apiospermum* (*Pseudallescheria boydii*) and *S. prolificans*.

Case Report:

A 70-year-old man, previously in good health, was diagnosed with acute myelogenous leukemia – FAB M0 in November 2005. The patient was originally from Germany and had immigrated to Canada in 1983. He was admitted and received induction chemotherapy with daunorubicin from days 1 to 3 and cytarabine from days 1-7. He was also given itraconazole 200 mg oral solution twice daily as antifungal prophylaxis for four weeks starting on day 4 of chemotherapy. The post-induction course was complicated by the development of fever and neutropenia (absolute neutrophil count <500 cells/µL) for which he received piperacillin/tazobactam and ciprofloxacin intravenously. This resulted in resolution of fever after 1 week. Investigations including blood cultures, urine cultures, and computed tomogram (CT) of the chest did not reveal a source of infection. He failed to have adequate neutrophil recovery after the first course of induction chemotherapy and was discharged from hospital on no antimicrobials with an absolute neutrophil count of zero cells/µL.

Three weeks later, the patient was re-hospitalized with febrile neutropenia. His physical examination was remarkable for several non-tender, erythematous skin nodules.
primarily along his extremities (Figure 1). Blood cultures were done in broth bottles and kept in a continuous monitoring system (BacT/ALERT, BioMerieux Inc., Durham, NC). He was started on broad-spectrum antimicrobial therapy consisting of piperacillin/tazobactam, ciprofloxacin and vancomycin. Two blood cultures from the central venous catheter taken 4 days apart signaled positive and showed the presence of fungal hyphae. He was then started on a combination of intravenous voriconazole 4 mg/kg twice daily and caspofungin 50 mg daily. He continued to be febrile but subsequently had three negative blood cultures. A computed tomogram (CT) of his chest was normal. After 10 days of antifungal therapy, he received repeat induction chemotherapy with mitoxantrone and etoposide on days 1-5 followed by high-dose cytarabine on days 6 and 7. Despite ongoing combination antifungal therapy with voriconazole and caspofungin, the patient’s fungemia recurred and seven subsequent blood cultures over a one-month period remained positive for a grayish fungus that was later identified as Graphium basitruncatum. The patient’s central venous catheter was removed. A transesophageal echocardiogram showed no vegetations. Intravenous liposomal amphotericin B 5 mg/kg daily was started and this resulted in defervesence, regression of skin lesions, and no evidence of ongoing fungemia. The patient subsequently recovered his neutrophil count (absolute neutrophil count 5900 cells/μL) and was discharged home in February 2006 on daily injections of liposomal amphotericin. In March 2006, 6 weeks after recovery of peripheral blood cell counts, the patient re-developed subcutaneous nodules and a lesion above his left lateral malleolus that drained necrotic, purulent material. A swab of this lesion showed the presence of fungal elements by calcofluor stain but was culture negative. Blood cultures remained
negative. A bone marrow biopsy indicated that the leukemia was in remission. His condition progressively deteriorated with increasing size of cutaneous lesions, despite ongoing antifungal therapy with liposomal Amphotericin B. He opted for palliative management. Antifungal therapy was discontinued and the patient subsequently died. No autopsy was performed.

Mycology

Isolates from three blood cultures were referred to the University of Alberta Microfungus Collection and Herbarium, and two were accessioned as UAMH 10611 and 10620. When grown on potato dextrose agar (PDA; Difco Laboratories, Detroit, Mich.) at 30°C, colonies were 2.5 cm after 7 days and pale grayish brown with low floccose mycelium, reaching diameters of 7 cm after 21 days and becoming dark gray brown on the obverse and reverse. Growth was slower at 35°C with colonies attaining diameters of 4 cm after 21 days. There was no growth on medium containing 0.4% cycloheximide. Microscopic mounts were obtained from cereal agar in slide culture preparations and from oatmeal salts agar (recipes in reference 6) after 7 to 21 days incubation. Examination revealed conidia of two types produced on mononematous and synnematous conidiophores (Figure 2). Conidiogenous cells were percurrently proliferating (annellides), measuring 8 to 20 µm long by 1 to 2 µm wide. These were produced singly or in whorls of 2 to several cells on mononematous conidiophores, or at the apex of the synnemata. The predominant conidia were hyaline, single-celled, allantoid (sausage-shaped) with truncate bases and measured 4 to 7.5 µm long by 1.3 to 2.2 µm wide (average 5.5 by 1.9 µm). Oval to
ellipsoidal brown conidia were produced from the same or different conidiophores and measured 4.5 to 6.5 µm long by 2.5 to 4 µm wide (average 5.4 by 3.3 µm).

The isolates were identified as *Graphium basitruncatum* by morphological comparison with the ex-type culture, obtained from the Japan Collection of Microorganisms as JCM 9300 (=UAMH 8494), and by sequencing of the internal transcribed spacer regions (ITS) of the nuclear rRNA gene. The morphological features of the ex-type culture matched those of the patient isolates. Average conidial dimensions were 5.2 µm long and 1.7 µm wide for the curved conidia, and 5.6 µm long and 3.2 µm wide for the brown conidia. The ex-type culture failed to grow on medium with 0.4% cycloheximide but grew slightly faster than the patient isolates on PDA (3 cm diam after 7 days at 30°C). Procedures for DNA extraction, amplification and sequencing followed the protocols outlined in Sigler & Gibas (14). A BLAST search (1) with the 580 bp product yielded a 99% match with two sequences identified as *G. basitruncatum*. These included AB038427 derived from JCM 9300 (ex-type) and AB038425 derived from strain JCM 8083.

Antifungal susceptibility testing was performed using the CLSI approved method (9). The MIC for the case isolate were amphotericin B 0.5 µg/ml, itraconazole >16 µg/ml; voriconazole 8 µg/ml, caspofungin 2 µg/ml, ketoconazole 4 µg/ml, fluconazole >64 µg/ml and 5-fluorocytosine >64 µg/ml.

Discussion

Graphium basitruncatum has not been reported previously as a human pathogen. We describe infection in an immunocompromised patient from whom this organism was
repeatedly isolated from a sterile source (blood) and metastasized to the skin, resulting in necrotic fungal nodules. The patient was initially treated with caspofungin and voriconazole empirically. Recurrent fungemia while on this therapy is consistent with the high in vitro mean inhibitory concentrations (2 µg/mL and 8 µg/mL respectively).

The patient had clinical improvement with liposomal amphotericin B although the improvement also coincided with recovery of neutrophils, and was temporary. He then died from a relapse of his infection, despite showing no evidence of leukemia recurrence.

Fungemia in immunocompromised patients is primarily due to yeasts such as *Candida sp.*, *Cryptococcus sp.*, or *Trichosporon sp.*, and is much less common with moulds. However, filamentous fungi such as *Aspergillus*, *Fusarium*, *Exophiala*, and *Phaeoacremonium* may cause blood stream infections and cutaneous lesions in this patient population. Fungemia due to *Graphium basitruncatum* has not been previously reported in the literature.

The biology and distribution of *Graphium basitruncatum* are poorly known. The fungus is recorded twice from soil including from the original location in the Solomon Islands, and from Japan (JCM 8083). Described originally as *Stilbum basitruncatum* by Matsushima (8), the species was later considered a synonym of *Graphium penicillioides* by Sutton (15). It is possible, therefore, that other collections are classified under *G. penicillioides*, a widely distributed species for which the substrate is predominantly wood. Sutton reported the latter to be common in wood and beetle tunnels in *Ulmus americana* (American elm) in two Canadian provinces (Manitoba and Saskatchewan).

How our patient acquired his infection is unknown. He lived in a rural area of Ontario, Canada, where he regularly worked in his yard and pruned trees. There was no evidence
of a recent wound by thorn or splinter although he had sustained several cuts in the past. He had no recent travel history.

The genus *Graphium* includes synnematous fungi having annellidic and sometimes sympodial conidiogenesis and slimy conidia. Current taxonomic concepts restrict the genus to include anamorphic members of the Microascaceae (10), a family of the Ascomycota that includes the important opportunistic pathogens *Pseudallescheria boydii* (*Scedosporium apiospermum*) and *Scedosporium prolificans* (3, 5, 12). *Graphium*-like species having affinities to the family Ophiostomatales are placed in the genus *Pesotum* (11). Okada et al. determined that *Graphium penicillioides*, the type species, was a species aggregate and that *Stilbum basitruncatum* was morphologically and phylogenetically distinct (10,11). They proposed a new combination as *G. basitruncatum* (Mats.) Seifert and Okada and selected an epitype specimen for *G. penicillioides* (10).

Teleomorphs for *Graphium* species occur in *Pseudallescheria* and *Petriella*, but no teleomorph is known for *G. basitruncatum*. In a phylogenetic analysis based on analysis of ITS sequences, *G. basitruncatum* (shown in the tree as “*G. penicillioides*” CBS 320.72) was basal to all *Pseudallescheria* and *Petriella* species and the anamorphic *S. prolificans* (3, 13). Analyses including more *Graphium* species are needed to evaluate the relationships among these fungi.

Graphium synnemata are uncommonly observed in the clinical laboratory and their development is enhanced by subculture on sporulation media such as oatmeal salts agar. *Graphium* states are usually found associated with *Scedosporium* synanamorphs in isolates of *P. boydii*, and less commonly, *Petriella* species. Conidial shape and tolerance to cycloheximide may help to distinguish these fungi from *G. basitruncatum*. Synnematal
conidia of *P. boydii* and *Petriella* species are cylindrical to broadly clavate (mostly
greater than 2.5 µm in width) with flattened bases. Those of *G. basitruncatum* are narrow
(less than 2.2 µm in width), slightly curved (allantoid) with narrow, truncate bases
(shown in Figure 3 and in scanning electron micrographs published in reference 10 and
11). Brown oval conidia also may be produced but differ by having rounded bases.
Isolates of *P. boydii* are usually tolerant to cycloheximide at a concentration of 0.4%;
however, variability in tolerance has been reported (5). *P. boydii* is now recognized as a
species aggregate and it is unknown whether the observed variation correlates with
molecular subgroups (12). *G. basitruncatum* and *S. prolificans*, which lacks both a
Graphium state and a teleomorph, are completely inhibited at this concentration of
cycloheximide. Although the name *G. eumorphum* has been used for the synnematal state
of *P. boydii* (2), *Graphium* states are found only among some subgroups of the *P. boydii*
aggregate and it is not yet clear to which subgroup this name applies (12).

It seems likely that *P. boydii* was the fungus concerned in two prior reports
attributed to *Graphium* species. A case of endophthalmitis involved a patient with
underlying rheumatoid arthritis and chronic anterior uveitis that had been treated with
topical and systemic corticosteroids (2). The fungus is described as having round and
oblong conidia, characteristics suggestive of *P. boydii*. Similarly, disseminated infection
in a dog was attributed to *G. fructicola* but the published illustrations indicate that the
fungus involved was *P. boydii* (7).

Optimal therapy for *Graphium basitruncatum* systemic infection is unknown.

Scedosporium species and *G. basitruncatum* appear to demonstrate similar responses to
antifungal drugs in vitro except for amphotericin B which showed good activity against
the clinical isolate of the latter species (4). Clinical improvement in our patient's case
was dependent upon improvement in his immune status. The fatal outcome in this patient
suggests that systemic invasive infections caused by this fungus may have a similar high
mortality rate as occurs with *Scedosporium* infections.

Nucleotide sequence accession number. A sequence from the case isolate UAMH
10611 was deposited into the GenBank database under accession number EF165016.

Acknowledgement: The authors thank Crystal Sand, National Reference Centre in
Mycology, Edmonton, Alberta, Canada for results of susceptibility testing. L. Sigler
thanks the Natural Sciences and Engineering Research Council of Canada for financial
support.

Figure Legends

Figure 1 Nodular, erythematous skin lesion of left arm.

Figure 2 Synnematous (left) and mononematous (right) conidiophores of *Graphium
basitruncatum* are shown. Microscopic preparations are from oatmeal salts agar
(left) and slide culture mounts (right) after one week. Note the presence of
conidia of two types including hyaline sausage-shaped conidia with truncate
bases, and brown oval conidia. Bar = 5 µm.
References

 Ophthalmol. 73:566-569.

 susceptibilities of the species of the Pseudallescheria boydii complex. Antimicrob.
 Agents Chemother. [Epub ahead of print].

 Estrella, J. Berenguer, and G.S. de Hoog. 2006. Scedosporium apiospermum:
 changing clinical spectrum of a therapy-refractory opportunist. Med Mycol. 44: 295-
 327.

 handbook of dermatophytes. A clinical guide and laboratory manual of
 dermatophytes and other filamentous fungi from skin, hair and nails. Star Publishing
 Co., Belmont, CA.

 62. Published by the author, Kobe, Japan.

