Mycobacterium alsiense, a Novel, Slowly Growing species isolated from two patients with pulmonary disease

Elvira Richter¹*, Enrico Tortoli², Arno Fischer³, Oliver Hendricks⁴, Regina Engel⁵, Doris Hillemann¹, Sabine Schubert³, Jette E. Kristiansen⁴

¹Forschungszentrum Borstel, National Reference Center for Mycobacteria, 23845 Borstel, Germany
²Regional Reference Center for Mycobacteria, Careggi Hospital, 50134 Florence, Italy
³Institute for Medical Microbiology and Virology, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
⁴Department of Research and Department of Clinical Microbiology, Sygehus Sønderjutland/Sønderborg, University of Southern Danmark, 6400 Sønderborg, Denmark
⁵Forschungszentrum Borstel, Structural Biochemistry, 23845 Borstel, Germany

*Corresponding Author, Corresponding author’s address:
Forschungszentrum Borstel
National Reference Center for Mycobacteria
Parkallee 18
23845 Borstel, Germany

Telephone: (49)-4537-188760; Fax: (49)-4537-188311
e-mail: erichter@fz-borstel.de
ABSTRACT

A previously undescribed, slowly growing *Mycobacterium* species was isolated from pulmonary specimens of two patients, one from Denmark and one from Italy. The isolates showed unique sequences in 16S rRNA, internal transcribed spacer and *hsp65* with the 16S rRNA most closely related to *M. szulgai* and *M. malmoense*.

Case Report

Patient from Denmark. A 72-year-old patient with a history of pulmonary carcinoma and tumor excision presented, 3 years after surgery, with reduced pulmonary capacity, fever (39.6°C), dyspnea, and productive cough. Right and left lower lobe infiltrates were found by chest radiography and computerized tomography. The detection of *Pseudomonas aeruginosa* in the sputum initially led to treatment with ceftazidime and ciprofloxacin. Due to progression of the pulmonary infiltrates, four additional sputum specimens (collected within 7 weeks) were analyzed for the presence of mycobacteria. Initial acid fast smears of these specimens were negative. Mycobacterial growth was detected in all four specimens using liquid (BacT/Alert, bioMérieux, Marcy l’Etoile, France) and solid media (Löwenstein-Jensen and Stonebrink medium). The partial 16S rRNA gene sequence analysis (8), performed from two isolates, was identical, but did not match that of any known mycobacterial species (GenBank Database, http://www.ncbi.nlm.nih.gov/blast/).

Antimicrobial treatment was expanded to include ethambutol (1200 mg/day), pyrazinamide (2000 mg/day), isoniazid (300 mg/day), and rifampicin (600 mg/day). Subsequent drug susceptibility testing with the radiometric BACTEC 460 system (Becton Dickinson Diagnostic Systems, Sparks, MD; [9]) showed no growth in the
presence of rifampicin (2 mg/l), rifabutin (1 mg/l), ethambutol (3.75 mg/l),
clarithromycin (1 mg/l), and streptomycin (3 mg/l) but growth in the presence of
isoniazid (0.1 mg/l). However, therapy was unchanged for 60 days but was
subsequently continued with ethambutol and rifampicin only. Five months later a
chest radiograph showed a clear regression of the infiltrates and the antibiotic
treatment was stopped after 6 months. The patient remained well and all follow-up
specimens (5 sputa within 12 months) remained negative.

Patient from Italy. A 70-year old male, with history of two episodes of hemoptysis in
the last seven months, was hospitalized because of productive cough. The chest
radiograph revealed only signs of emphysema and the hematologic parameters were
normal. The only sputum sample investigated for mycobacteria was smear negative
but grew a scotochromogenic mycobacterium on solid and in liquid cultures. The
strain was identified as “M. szulgai-like”, on the basis of genetic sequence analysis.
The patient was treated with clarithromycin and rifampicin. Two months later, a
subsequent chest radiograph revealed a broncho-pneumonic focus with signs of
healing.

Strain characteristics. The two strains presented identical sequences in the first
one-third of the 16S rRNA gene, in the internal transcribed spacer (ITS) interposed
between 16S and 23S rRNA genes and in the 422 bp segment of the gene encoding
for the 65kD heat shock protein (hsp65).
Sequence comparison of the 40 to 640 bp fragment of the 5’ end of the 16S rRNA
gene revealed no match in the RIDOM database. However, the strains showed only
3 bp and 6 bp differences to M. szulgai and M. malmoense, respectively. Moreover,
with a comparison of the complete 16S rRNA gene sequence (submitted to EMBL
Nucleotide Sequence Database accession number AJ938169), there was no identical entry in the GenBank database. Highest similarity was obtained with *M. malmoense* with a total of 16 bp differences.

Furthermore, the ITS sequence (AJ938170), compared against GenBank and RIDOM databases resulted in <91% and <86% identity, respectively. Additionally, by *hsp65* sequence (DQ381733), the strains differed by 13 bp from the most closely related sequence of *M. avium*.

We propose to name the new species *M. alsiense* pertaining to the Isle of Als (Denmark), the location of the hospital to which the first patient was admitted.

Phenotypic characteristics of *M. alsiense* were poorly distinctive. The strain grew at 25°C to 37°C, but not at 45°C with a weak yellow pigment in both light and dark conditions on Löwenstein-Jensen and Stonebrink medium. It remained unpigmented on solid Middlebrook 7H10 medium. Both genotypic characteristics including the presence of a long helix 18 at positions 451-482 of 16S rRNA (according to the *Escherichia coli* numbering system, [1]) and phenotypic characteristics group the species among the slowly growing mycobacteria. However, phenotypic characteristics alone do not allow a clear distinction of *M. alsiense* from *M. malmoense* and *M. szulgai* (Table 1).

Mycolic acid methyl esters were analysed by thin layer chromatography (3, 7) and revealed the presence of α- and keto-mycolic acids, with methoxy-mycolic acids being present in minor quantities. This is a common pattern among mycobacterial species, including *M. tuberculosis*.

Fatty acid methyl esters were identified by gas liquid chromatography/mass spectrometry (12). The major lipid components were C16:0 (26.2 %), C18:1ω9 (18.2 %), tuberculostearic acid (10Me-C18:0; 14.9 %), and C18:0 (8.8 %).
The high performance liquid chromatography, performed according to the CDC guidelines (2), revealed an identical profile characterized by a single, late cluster of peaks grossly resembling *M. palustre* and *M. lacus* (Fig. 1) (http://www.MycobacToscana.it/page4.htm).

Species identification of the nontuberculous mycobacteria based solely on biochemical and cultural characteristics is no longer considered reliable because of the increasing number of currently recognized species (approximately 130). Apart from the most frequently encountered species, many isolates of mycobacteria remain unclassified. The introduction of molecular methods for identification of mycobacteria in the past years has led to an increasing knowledge about the taxonomy of this genus (4). Although numerous new species have been described recently, several mycobacterial isolates in the laboratory remain unidentified (11). Reports of isolates like the current ones may lead to the correct establishment of new species, once a suitable number of isolates have been detected (11). Furthermore a definite identification of a given isolate may lead to a better estimation of the pathogenicity and epidemiology of this organism.

In conclusion, slowly growing mycobacteria are often found to be pathogenic in both immunocompetent and immunocompromised patients (4, 5, 10). Although only two strains have been isolated, the potential pathogenicity of the proposed slowly growing mycobacterial species *M. alsiense*, is supported by the presence of compatible clinical disease, laboratory findings, and the response to mycobacterial treatment.
ACKNOWLEDGMENT

We thank Barbara A. Brown-Elliott (Tyler, Tx) for critical comments and suggestions to improve the manuscript.

REFERENCES

TABLE 1. Analysis of growth and biochemical characteristics antimicrobial susceptibility of *M. alsiense* sp. nov. compared to those of *M. malmoense* and *M. szulgai*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>M. alsiense</th>
<th>M. malmoense</th>
<th>M. szulgai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth at:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25°C</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>37°C</td>
<td>+</td>
<td>+/-</td>
<td>+</td>
</tr>
<tr>
<td>45°C</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Colony morphology</td>
<td>smooth</td>
<td>smooth</td>
<td>rough/smooth</td>
</tr>
<tr>
<td>Pigmentation</td>
<td>s</td>
<td>n</td>
<td>s</td>
</tr>
<tr>
<td>Catalase at 68°C</td>
<td>+</td>
<td>V</td>
<td>+</td>
</tr>
<tr>
<td>Growth in the presence of:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-nitrobenzoic acid</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>TCH</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Thioacetazone</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>+</td>
<td>+</td>
<td>V</td>
</tr>
<tr>
<td>Oleate</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NaCl</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MacConkey agar</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Niacin</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nitrate reductase</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Semi-quantitative catalase</td>
<td><45mm</td>
<td><45mm</td>
<td>>45mm</td>
</tr>
<tr>
<td>Tween 80 hydrolysis</td>
<td>-</td>
<td>+</td>
<td>v</td>
</tr>
<tr>
<td>Arylsulfatase activity</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Urease activity</td>
<td>-</td>
<td>V</td>
<td>+</td>
</tr>
<tr>
<td>Beta-Glucosidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tellurite Reduction</td>
<td>-</td>
<td>+</td>
<td>V</td>
</tr>
</tbody>
</table>

Abbreviations: v, variable; n, nonchromogenic; s, scotochromogenic; TCH, Thiophene-2-carboxylic acid hydrazide
Figure 1: HPLC chromatograms from *M. malmoense*, *M. palustre*, *M. szulgai*, *M. lacus*, and *M. alsiense*. (LMWIS: low molecular weight internal standard, HMWIS: high molecular weight internal standard)